Research on Optimization Method of Railway Image Scene Classification Based on Deep Learning Method
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The field of railway detection and monitoring generates massive image data, image scene classification is of great value for subsequent analysis and management. In this study, a visual scene classification model that combines Deep Convolutional Neural Networks (DCNN) and Grad Class Activation Mapping (Grad-CAM) is proposed, DCNN extract feature of railway scene classification image dataset by transfer learning method, Grad-CAM improves the interpretability of the classification model by calculating the weighted thermogram and activation scores of the categories. In the experiment, the effects of different DCNN structures on the performance of railway image scene classification tasks are compared, and visual interpretation of scene classification model is realized. At the same time, based on visualization method, an optimization process is proposed to improve model classification ability by reducing internal deviation of dataset, which verifies the effectiveness of the deep learning technology for image scene classification task.

    Reference
    Related
    Cited by
Get Citation

赵冰,李平,代明睿,马小宁.基于深度学习的铁路图像场景分类优化研究.计算机系统应用,2019,28(6):228-234

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 10,2018
  • Revised:December 29,2018
  • Adopted:
  • Online: May 28,2019
  • Published: June 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063