Short-Term Traffic Flow Prediction Based on ANFIS Hybrid Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Urban short-term traffic flow forecasting can help people choose the optimal route for travel and improve travel efficiency, which is necessary because the traffic congestion increasingly serious today. It is difficult to predict short-term traffic flow accurately because there are various factors can influence short-term traffic flow such as weather. To improve the accuracy of short-term traffic flow prediction, this study proposes a hybrid model based on Adaptive Neuro-Fuzzy Inference System (ANFIS). The hybrid model is combined with the periodicity knowledge model and the ANFIS model which has been driven by residual data. To verify the performance of the proposed hybrid model, it is compared with the Backward Propagating Neural Network (BPNN) model and the normal ANFIS model. The experimental results show that the hybrid model has better applicability and accuracy in traffic flow prediction.

    Reference
    Related
    Cited by
Get Citation

颜秉洋,唐敏佳,周长庚,李银萍.基于ANFIS混合模型的短时交通流预测.计算机系统应用,2019,28(6):247-253

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 28,2018
  • Revised:December 18,2018
  • Adopted:
  • Online: May 28,2019
  • Published: June 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063