Moving Pedestrian Detection Framework with Object Segmentation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Object detection is widely used in surveillance systems for pedestrian detection and face recognition. It is a research hotspot of current deep learning. Supervised learning trains pedestrian detectors for specific scenes by manually annotating large datasets. However, the manual labeling method is time-consuming and laborious. In this work, the shortcomings of manual labeling of datasets for supervised learning are studied. A method of semi-automatic labeling of pedestrians is proposed. The surveillance video captured by the stationary monocular camera, using the initial foreground possibilities provided by the optical flow information, and the visual similarity across time, iteratively updates the initial foreground likelihood to segment the moving pedestrians. According to the segmented foreground pedestrians, a method of semi-automatic labeling of pedestrians is proposed. The experimental results show that the proposed method can provide a large number of datasets for the pedestrian detection system, and the efficiency is obviously superior to the traditional manual annotation method.

    Reference
    Related
    Cited by
Get Citation

宫法明,吕轩轩,宫文娟,王晓宁.结合对象分割的运动行人检测.计算机系统应用,2019,28(5):232-237

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 21,2018
  • Revised:December 12,2018
  • Adopted:
  • Online: May 05,2019
  • Published: May 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063