Fog Nowcasting Model Based on LSTM Network and Its Application
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Long-Term and Short-Term Memory (LSTM) network is a time recursive neural network, which is suitable for predicting events with relatively long delay in time series. In this study, a new fog proximity prediction framework based on LSTM network is constructed, which can transform meteorological observation data into time series data and model them based on time series data. In order to validate the proposed model effectively, this study transforms the surface meteorological data of 81 national stations in Anhui Province from October 2015 to June 2017 into sequence data and constructs a validation data set. Based on this data set, the future 1-4 hourly fog forecasting experiments are carried out. The experimental results show that the proposed model's TS-Scores are 61%, 55%, 36%, and 31%, respectively, which are obviously better than CNN and those of traditional machine learning algorithms such as SVM and KNN. It is an effective method for fog prediction.

    Reference
    Related
    Cited by
Get Citation

苗开超,韩婷婷,王传辉,章军,姚叶青,周建平.基于LSTM网络的大雾临近预报模型及应用.计算机系统应用,2019,28(5):215-219

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 14,2018
  • Revised:December 10,2018
  • Adopted:
  • Online: May 05,2019
  • Published: May 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063