Short Text Classification Based on Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Short text classification is one of the hotspots of research in natural language processing. A new model of text representation is proposed in this study (N-of-DOC), and in order to solve the problem of sparse representation in Chinese, the Word2Vec distributed representation is used, finally, it is applied to the improved Convolution Neural Network (CNN) model to extract the high level features from the filter layer, the classification model is obtained by connecting the Softmax classifier after the pooling layer. In the experiment, the traditional text representation model and the improved text representation model are used as the input of the original data, respectively. It acts on the model of traditional machine learning (KNN, SVM, logistic regression, naive Bayes) and the improved CNN model. The results show that the proposed method can not only solve the dimension disaster and sparse problem of Chinese text vectors, but also improve the classification accuracy by 4.23% compared with traditional methods.

    Reference
    Related
    Cited by
Get Citation

陈巧红,王磊,孙麒,贾宇波.卷积神经网络的短文本分类方法.计算机系统应用,2019,28(5):137-142

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 13,2018
  • Revised:December 03,2018
  • Adopted:
  • Online: May 05,2019
  • Published: May 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063