Flood Forecast Based on Regularized GRU Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problems of low accuracy and over-fitting of traditional neural network model in flood forecasting process, this study takes the monthly average water level of Waizhou Hydrological Station in Ganjiang River Basin as the research object, and proposes a flood forecasting model based on regularized GRU neural network to improve the accuracy of flood forecasting. Relu function is selected as the output layer activation function of the whole neural network. To improve the generalization performance of GRU model, regularization of elastic network is introduced into GRU model, and regularizes the input weights in the network. The model is applied to the fitting and prediction of the monthly average water level at Waizhou Hydrological Station, and the experimental comparison shows that the model optimized by regularization of elastic network has a higher fitting degree, the qualified rate is increased by 9.3%, and the calculated root mean square error is small.

    Reference
    Related
    Cited by
Get Citation

段生月,王长坤,张柳艳.基于正则化GRU模型的洪水预测.计算机系统应用,2019,28(5):196-201

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 08,2018
  • Revised:December 03,2018
  • Adopted:
  • Online: May 05,2019
  • Published: May 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063