Collaborative Filtering Recommendation System Based on Improved Bipartite Graph and User Reliability
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The application of bipartite graph theory in collaborative filtering recommendation based on substance diffusion theory of complex networks has attracted more and more attention from scholars. Existing algorithms mainly consider the positive rating when calculating neighbor users, ignoring the negative rating of users. In order to improve the accuracy of recommendation algorithm, a collaborative filtering recommendation algorithm based on improved bipartite graph and user reliability is proposed. The algorithm quantifies both positive ratings and negative ratings into the weight of the path, which controls the user's energy distribution, and takes users' reliability into account when predicting the rating, therefore, the accuracy of recommendation result is significantly improved. A series of comparative experiments are carried out on MovieLens and Eachmove datasets. The experimental results show that the improved algorithm has lower mean absolute error.

    Reference
    [1] 李龙生, 艾均, 苏湛, 等. 结合用户行为和物品标签的协同过滤推荐算法. 计算机应用与软件, 2018, 35(6):248-253.[doi:10.3969/j.issn.1000-386x.2018.06.045
    [2] 赵宇峰, 李新卫. 基于歌曲标签聚类的协同过滤推荐算法的研究. 计算机应用与软件, 2018, 35(6):259-262.[doi:10.3969/j.issn.1000-386x.2018.06.047
    [3] Zhou T, Ren J, Medo M, et al. Bipartite network projection and personal recommendation. Physical Review E, 2007, 76:046115.[doi:10.1103/PhysRevE.76.046115
    [4] Liu JG, Wang BH, Guo Q. Improved collaborative filtering algorithm via information transformation. International Journal of Modern Physics C, 2009, 20(2):285-293.[doi:10.1142/S0129183109013613
    [5] Zhang YC, Blattner M, Yu YK. Heat conduction process on community networks as a recommendation model. Physical Review Letters, 2007, 99(15):154301.[doi:10.1103/PhysRevLett.99.154301
    [6] 刘朋. 混合个性化推荐方法研究[硕士学位论文]. 北京:北方工业大学, 2018.
    [7] 李玲. 基于二部图的个性化推荐系统研究[硕士学位论文]. 北京:北方工业大学, 2018.
    [8] 高长元, 段文彬, 张树臣. 基于差异路径权重的二部图网络推荐算法. 计算机应用研究, 2019, (3):1-6
    [9] 陈诚. 基于二部图的推荐算法的研究与应用[硕士学位论文]. 北京:北京邮电大学, 2016.
    [10] 王茜, 段双艳. 一种改进的基于二部图网络结构的推荐算法. 计算机应用研究, 2013, 30(3):771-774.[doi:10.3969/j.issn.1001-3695.2013.03.033
    [11] 曹易, 张宁. 二部图在用户-网站中的实证研究. 计算机系统应用, 2012, 21(6):132-135.[doi:10.3969/j.issn.1003-3254.2012.06.028
    [12] 唐敏, 关健, 邓国强, 等. 一种求解二部图最大匹配问题新算法及其应用. 计算机系统应用, 2012, 21(3):72-75, 28.[doi:10.3969/j.issn.1003-3254.2012.03.016
    [13] 黄波, 严宣辉, 林建辉. 基于有向图分割的推荐算法. 计算机系统应用, 2015, 24(12):196-203.[doi:10.3969/j.issn.1003-3254.2015.12.031
    [14] 任琛. 融入生活体验的二部图推荐算法[硕士学位论文]. 西安:西安电子科技大学, 2017.
    [15] 黄熠姿, 杨金鑫, 孙维. 基于改进二部图与专家信任的混合推荐算法. 价值工程, 2017, 36(19):160-164
    [16] 卢竹兵, 唐雁. 一种基于信任网络的协同过滤推荐策略. 西南师范大学学报(自然科学版), 2008, 33(2):123-126
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

邓小燕,张晓彬.基于改进加权二部图和用户信任度的协同过滤推荐算法.计算机系统应用,2019,28(5):125-130

Copy
Share
Article Metrics
  • Abstract:1517
  • PDF: 2639
  • HTML: 1064
  • Cited by: 0
History
  • Received:November 06,2018
  • Revised:November 23,2018
  • Online: May 05,2019
  • Published: May 15,2019
Article QR Code
You are the first987220Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063