Short Text Comment Sentiment Analysis of Improved Topic Models
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [9]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    When the traditional topic model method is used to analyze the sentiment of the topic model for short text corpora such as comments in the medical service platform, the problem of poor context dependency may occur. A WLDA algorithm based on word embedding is proposed. The word w* trained in the Skip-Gram model replaces the word w` in the Gibbs sampling algorithm in the traditional LDA model, and the parameter λ is introduced to control the resampling probability of the words during Gibbs sampling. The experimental results show that the subject model has a high degree of consistency compared to similar topic models.

    Reference
    [1] 李鹏, 于岩, 李英乐, 等. 基于权重微博链的改进LDA微博主题模型. 计算机应用研究, 2016, 33(7):2018-2021.[doi:10.3969/j.issn.1001-3695.2016.07.021
    [2] Das R, Zaheer M, Dyer C. Gaussian LDA for topic models with word embeddings. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing, China. 2015. 167-182.
    [3] Bunk S, Krestel R. WELDA:Enhancing topic models by incorporating local word context. Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. Fort Worth, TX, USA. 2018. 78-86.
    [4] 韩忠明, 李梦琪, 刘雯, 等. 网络评论方面级观点挖掘方法研究综述. 计算机学报, 2018, 29(2):417-441
    [5] 彭三春. 基于RNN和LDA模型的商品评论情感分类研究[硕士学位论文]. 杭州:浙江理工大学, 2018.
    [6] 黄发良, 于戈, 张继连, 等. 基于社交关系的微博主题情感挖掘. 软件学报, 2017, 28(3):694-707
    [7] 李勇敢, 周学广, 孙艳, 等. 中文微博情感分析研究与实现. 软件学报, 2017, 28(12):3183-3205
    [8] Wei X, Sun J, Wang X. Dynamic mixture models for multiple time series. Proceedings of the 20th International Joint Conference on Artifical Intelligence. Hyderabad, India. 2007. 2909-2914.
    [9] 夏友青. 基于LDA的在线主题演化模型研究与优化[硕士学位论文]. 长沙:国防科学技术大学, 2012.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

花树雯,张云华.改进主题模型的短文本评论情感分析.计算机系统应用,2019,28(3):255-259

Copy
Share
Article Metrics
  • Abstract:2380
  • PDF: 2486
  • HTML: 1748
  • Cited by: 0
History
  • Received:September 28,2018
  • Revised:October 23,2018
  • Online: February 22,2019
Article QR Code
You are the first992166Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063