Social Platform Spam Filtering Based on TF-IDF and Optimized BP Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, with the improvement of the pace of life and the rapid development of the Internet, people are more inclined to communicate with the short text on many social platforms, and then some people can disturb the network's green environment by releasing the spam texts to hinder the normal social intercourse. In order to solve this problem, we propose a method of spam text detection based on optimized BP neural network and social platform. Through this method, the spam text filtering on the social platform is realized. First of all, through the stuttering participle and to stop word to construct keyword data set. Secondly, the keyword vector of the text expression is used to compute the weights of each keyword so as to reduce the dimension of the text vector and obtain the eigenvector. Finally, based on this, the BP neural network classifier is used to classify the short texts, and the spam text is detected and filtered. The experimental results show that with this method, the average classification accuracy for the 1000 dimensional text feature vector reaches 97.720%.

    Reference
    Related
    Cited by
Get Citation

王杨,王非凡,张舒宜,黄少芬,许闪闪,赵晨曦,赵传信.基于TF-IDF和改进BP神经网络的社交平台垃圾文本过滤.计算机系统应用,2019,28(3):126-132

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 27,2018
  • Revised:October 23,2018
  • Adopted:
  • Online: February 22,2019
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063