Clothing Image Retrieval Method Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to achieve fast and accurate image retrieval for large-scale clothing image sets and break through the limitations of current conventional retrieval methods, this study proposes a new deep learning model:Fashion-16 clothing image retrieval model. Based on the idea of first classification and intra-class retrieval, based on the powerful image feature extraction ability of VGG-16 model, the convolutional neural network Softmax classifier is used for classification, and the nearest neighbor search is performed for the idea of locally sensitive hashing under the same category. An image retrieval model correction for clothing category attributes is implemented. The experimental results show that the model has good stability, accuracy, and retrieval speed, and has practical value and research significance.

    Reference
    Related
    Cited by
Get Citation

陈双,何利力,郑军红.基于深度学习的服装图像检索方法.计算机系统应用,2019,28(3):229-234

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 28,2018
  • Revised:October 23,2018
  • Adopted:
  • Online: February 22,2019
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063