Fire Location Model Based on Adaptive Learning Rate BP Neural Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [7]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to solve the problem of slow convergence of traditional BP (Back Propagation) neural network, through the BP neural network build the fire point prediction model, we use an adaptive learning rate method to improve the BP neural network, by comparison, the algorithm converges faster, and the output of the model achieves the desired effect. At the same time, an improved algorithm is realized by using the dynamic reconfigurable technology of FPGA. Through the simulation and results test, the design greatly reduces the prediction time on the basis of the prediction results and provides a theoretical basis for environmental prediction and detection trajectory planning.

    Reference
    [1] 黎育权. 基于BP神经网络的多因素人口增长预测. 电子技术与软件工程, 2018, (10):169
    [2] 中华人民共和国生态环境部. 秸秆焚烧监测报告. http://www.mee.gov.cn/hjzl/dqhj/jgjsjcbg/. (2011-06-26)[2018-01-09]
    [3] 高宇航. 一种改善BP神经网络性能的方法研究. 微型机与应用, 2017, 36(6):53-57, 61.[doi:10.19358/j.issn.1674-7720.2017.06.017
    [4] 位俊雷, 张利军, 李泽元. 基于FPGA的神经网络PID控制器设计与实现. 自动化与仪器仪表, 2017, (10):106-108.[doi:10.14016/j.cnki.1001-9227.2017.10.106
    [5] 曾武序, 钱文彬, 王映龙, 等. 一种基于Python和BP神经网络的股票预测方法. 计算机时代, 2018, (6):72-75, 80.[doi:10.16644/j.cnki.cn33-1094/tp.2018.06.021
    [6] 于群, 张铮, 屈玉清, 等. 基于ARMA-BP神经网络组合模型的电网大停电事故损失负荷预测. 数学的实践与认识, 2018, 48(9):144-153
    [7] 杨景明, 杜韦江, 吴绍坤, 等. 基于FPGA的BP神经网络硬件实现及改进. 计算机工程与设计, 2018, 39(6):1733-1737, 1773.[doi:10.16208/j.issn1000-7024.2018.06.041
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王古森,高波.基于自适应学习率BP神经网络的火点定位模型.计算机系统应用,2019,28(3):250-254

Copy
Share
Article Metrics
  • Abstract:2124
  • PDF: 2019
  • HTML: 2111
  • Cited by: 0
History
  • Received:September 23,2018
  • Revised:October 19,2018
  • Online: February 22,2019
Article QR Code
You are the first991234Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063