Fire Location Model Based on Adaptive Learning Rate BP Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to solve the problem of slow convergence of traditional BP (Back Propagation) neural network, through the BP neural network build the fire point prediction model, we use an adaptive learning rate method to improve the BP neural network, by comparison, the algorithm converges faster, and the output of the model achieves the desired effect. At the same time, an improved algorithm is realized by using the dynamic reconfigurable technology of FPGA. Through the simulation and results test, the design greatly reduces the prediction time on the basis of the prediction results and provides a theoretical basis for environmental prediction and detection trajectory planning.

    Reference
    Related
    Cited by
Get Citation

王古森,高波.基于自适应学习率BP神经网络的火点定位模型.计算机系统应用,2019,28(3):250-254

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 23,2018
  • Revised:October 19,2018
  • Adopted:
  • Online: February 22,2019
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063