Survey on Review Spam Detection Techniques
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the development of the Internet, users tend to refer to online reviews before shopping, travelling, and dining. After that, they write reviews to express their own opinions. Online reviews are increasingly of great value. The significant guiding role of reviews playing in consumers' decisions has given rise to false comments, which we call review spam. The review spam refers to the comments written by users that do not meet the true characteristics of products, due to factors such as commercial profits and personal bias. Spammers imitate the writing style of true reviewers so that customers can hardly discriminate the review spam. Scholars at home and abroad use natural language processing techniques to detect review spam. From the perspective of feature engineering, review spam detection methods are divided into three types:the linguistic and behavior based, the graph based, and the representation learning based. This survey mainly describes the general process of review spam detection, summarizes feature designing of the models, and makes a comparison among three types of methods. Furthermore, the most commonly used datasets are introduced. Finally, it explores the research directions in the future.

    Reference
    [1] Luca M, Zervas G. Fake it till you make it:Reputation, competition, and Yelp review fraud. Management Science, 2016, 62(12):3412-3427.[doi:10.1287/mnsc.2015.2304
    [2] Jindal N, Liu B. Opinion spam and analysis. Proceedings of 2008 International Conference on Web Search and Data Mining. Palo Alto, CA, USA. 2008. 219-230.
    [3] Khurshid F, Zhu Y, Yohannese CW, et al. Recital of supervised learning on review spam detection:An empirical analysis. Proceedings of the 201712th International Conference on Intelligent Systems and Knowledge Engineering. Nanjing, China. 2017. 1-6.
    [4] Etaiwi W, Naymat G. The impact of applying different preprocessing steps on review spam detection. Procedia Computer Science, 2017, 113:273-279.[doi:10.1016/j.procs.2017.08.368
    [5] Rayana S, Akoglu L. Collective opinion spam detection:Bridging review networks and metadata. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, NSW, Australia. 2015. 985-994.
    [6] Ott M, Cardie C, Hancock J. Estimating the prevalence of deception in online review communities. Proceedings of the 21st International Conference on World Wide Web. Lyon, France. 2012. 201-210.
    [7] Ott M, Choi Y, Cardie C, et al. Finding deceptive opinion spam by any stretch of the imagination. Meeting of the Association for Computational Linguistics:Human Language Technologies. Association for Computational Linguistics, 2011. 309-319.
    [8] Xu C, Zhang J. Combating product review spam campaigns via multiple heterogeneous pairwise features. Proceedings of the 2015 SIAM International Conference on Data Mining. Vancouver, BC, Canada. 2015. 172-180.
    [9] Feng S, Banerjee R, Choi Y. Syntactic stylometry for deception detection. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju, the Republic of Korea. 2012. 171-175.
    [10] Li JW, Ott M, Cardie C, et al. Towards a general rule for identifying deceptive opinion spam. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, MD, USA. 2014. 1566-1576.
    [11] 任亚峰, 姬东鸿, 张红斌, 等. 基于PU学习算法的虚假评论识别研究. 计算机研究与发展, 2015, 52(3):639-648
    [12] 赵军, 王红. 融合情感极性和逻辑回归的虚假评论检测方法. 智能系统学报, 2016, 11(3):336-342
    [13] Mukherjee A, Venkataraman V, Liu B, et al. What Yelp fake review filter might be doing? Proceedings of the 7th International Conference on Weblogs and Social Media. Palo Alto, CA, USA. 2013. 409-418.
    [14] Mukherjee A, Venkataraman V, Liu B, et al. Fake review detection:Classification and analysis of real and pseudo reviews. Technical Report UIC-CS-2013-03. Chicago:University of Illinois at Chicago, 2013.
    [15] Mukherjee A, Liu B, Glance N. Spotting fake reviewer groups in consumer reviews. Proceedings of the 21st International Conference on World Wide Web. Lyon, France. 2012. 191-200.
    [16] Ye J, Akoglu L. Discovering opinion spammer groups by network footprints. Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham. 2015. 267-282.
    [17] Xu C, Zhang J, Chang K, et al. Uncovering collusive spammers in Chinese review websites. Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. ACM. 2013. 979-988.
    [18] Xu C, Zhang J. Towards collusive fraud detection in online reviews. Proceedings of 2015 IEEE International Conference on Data Mining. Atlantic City, NJ, USA. 2015. 1051-1056.
    [19] Viswanath B, Bashir MA, Crovella M, et al. Towards detecting anomalous user behavior in online social networks. Proceedings of the 23rd USENIX Security Symposium. San Diego, CA, USA. 2014. 223-238.
    [20] Lim E P, Nguyen V A, Jindal N, et al. Detecting product review spammers using rating behaviors. Proceedings of the 19th ACM International Conference on Information and Knowledge Management. ACM. 2010. 939-948.
    [21] Xie SH, Wang G, Lin SY, et al. Review spam detection via temporal pattern discovery. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China. 2012. 823-831.
    [22] Fei GL, Mukherjee A, Liu B, et al. Exploiting burstiness in reviews for review spammer detection. Proceedings of the 7th International AAAI Conference on Weblogs and Social Media. Ann Arbor, MI, USA. 2013. 175-184.
    [23] Li HY, Fei GL, Wang S, et al. Bimodal distribution and co-bursting in review spam detection. Proceedings of the 26th International Conference on World Wide Web. Perth, Australia. 2017. 1063-1072.
    [24] Yang M, Lu ZY, Chen XJ, et al. Detecting review spammer groups. Proceedings of the 31th AAAI Conference on Artificial Intelligence. San Francisco, CA,USA. 2017. 5011-5012.
    [25] Rosen-Zvi M, Griffiths T, Steyvers M, et al. The author-topic model for authors and documents. Proceedings o獦琠??慥爠堲椰癴?ㄠ?は??づ???????のㄠ???扥牲?孡??嵴??敩?删乁???捦?畣汩敡祬????啥灬獬?慧湥摮?摥漮眠湂獡??潦搬攠汁楬湢来?瑴桡攬?癃楡獮畡慤污?攠瘲漰氰甴琮椠漴游?漭昴?昴愮猼桢楲漾湛′琶牝攠湗摡獮?眠楘瑐栬?潌湩敵?捋氬愠獚獨?捯漠汊氮愠扈潡牮慤瑬楩癮敧?晣楯汬瑤攭牳楴湡杲??偰牲潯换敬敥摭椠湩杮猠?潥晶?瑥桷攠???瑭栠??湴瑥散牴湩慯瑮椠潢湹愠汪??潮湴晬敹爠敥湭换敥?潤湩?坧漠牴汥摸?坳椠摡敮?圠敢扥???潩湯瑲牳??????慥汥??兮畧??????扨敥挠?‵?慨渠慁摮慮?????????の???????扥爠?孳??嵣?坡慴湩杯??????畃慯湭杰?????婯桮敡湬朠?????敩瑳?慩汣??匠敖浡楮?獯畵灶敥牲瘬椠獂敃搬?牃敡据畡牤獡椮瘠攲‰愱男琮漠攳渶挶漭搳攷父献?晢潲爾?猲漷捝椠慄汥?牡敮癧椠敒睋?猠灓慩浮?摨攠瑁敋挮琠楓潴湡??倭牯潦挭敡敲摴椠湡杰獰?潯晡?瑨桥敳??は????瑶桩??渠瑳数牡湭慭瑥楲漠湤慥汴??潴湩景敮爺敁渠捳敵?潶湥??漠浊灯畵瑲慮瑡楬漠湯慦氠??湴瑥敬汬汩楧来敮湴挠敉?慦湯摲?卡整捩畯牮椠瑓祹??坥畭硳椬?′?栱椸測愠?‰㈨?ㄩ??″?????????扩爺?嬰??崰‰?洯慳稱漰游?洴攭挰栱愷渭椰挴愵水?琷甼牢歲??栲琸瑝瀠獗???攠湇?眠楘歩楥瀠敓摈椬愠?潩牵朠?眬椠步楴??浬愮稠潒湥彶?敥捷栠慧湲楡捰慨氠形呡畳牥此????ど???び?????孲?ぶ??????ち?嵭?扲爠?孥?づ嵣?坩畯??夠???牣敥敥湤敩????卯浦礠瑴桨???‰攱琱?慉汅???椱猱瑴潨爠瑉楮潴湥?慮獡?慩?癮慡汬椠摃慯瑮楦潥湲?据牣楥琠敯牮椠潄湡?楡渠?瑩桮敩?楧搮攠湖瑡楮晣楯捵慶瑥楲漬渠?潃昬?獃畡獮灡楤捡椮漠甲猰?爱攮瘠椱攲眴猲??倲爴漷挮攼敢摲椾湛朲猹?漠晙?琎栬攠??猳琬?埦澇牒欬猠桉漮瀠?澎渪?匭澤捓椭慆氷??攡撋榄慚??溺懆氫礔瑶椮挠猗??坦慦玥栨槪渶柑瑦潈温??????唬匠???有〩???′???????>[30] 邵珠峰, 姬东鸿. 基于情感特征和用户关系的虚假评论者的识别. 计算机应用与软件, 2016, 33(5):158-161, 172.[doi:10.3969/j.issn.1000-386x.2016.05.039
    [31] Akoglu L, Chandy R, Faloutsos C. Opinion fraud detection in online reviews by network effects. Proceedings of the 7th international AAAI Conference on Weblogs and Social Media. Ann Arbor, MI, USA. 2013. 2-11.
    [32] Shehnepoor S, Salehi M, Farahbakhsh R, et al. NetSpam:A network-based spam detection framework for reviews in online social media. IEEE Transactions on Information Forensics and Security, 2017, 12(7):1585-1595.[doi:10.1109/TIFS.2017.2675361
    [33] Wang XP, Liu K, He SZ, et al. Learning to represent review with tensor decomposition for spam detection. Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing. Austin, TX, USA. 2016. 866-875.
    [34] Wang XP, Liu K, Zhao J. Detecting deceptive review spam via attention-based neural networks. In:Huang XJ, Jiang J, Zhao DY, et al., eds. Natural Language Processing and Chinese Computing. Cham:Springer, 2018. 866-876.
    [35] 张李义, 刘畅. 结合深度置信网络和模糊集的虚假交易识别研究. 现代图书情报技术, 2016, 32(1):32-39
    [36] Dong MQ, Yao LN, Wang XZ, et al. Opinion fraud detection via neural autoencoder decision fore????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

尤苡名.虚假评论检测技术综述.计算机系统应用,2019,28(3):1-9

Copy
Share
Article Metrics
  • Abstract:2664
  • PDF: 8619
  • HTML: 8668
  • Cited by: 0
History
  • Received:September 18,2018
  • Revised:October 08,2018
  • Online: February 22,2019
Article QR Code
You are the first990807Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063