Method of Using Learning Vector Classification Samples to Predict Online Achievements
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Recording and analyzing the data generated by online learners on the Internet and providing accurate and personalized services is an important aspect of online education. This study takes the daily learning data generated by learners on the teaching platform as a sample, synthesizes its five most representative influencing factors, classifies samples by Learning Vector Quantization (LVQ) neural network, and obtains online learning academic performance prediction data based on BP network. The genetic algorithm is used in the model to effectively optimize the weights and thresholds of the BP network, which accelerates the convergence of the model while improving the prediction accuracy. Finally, compared with the other two models, the results show that the model's prediction results are basically consistent with the real performance distribution. It has a high degree of credibility and provide a decision-making basis for effective prediction of learning status, which has certain value in engineering application.

    Reference
    Related
    Cited by
Get Citation

郎波,樊一娜.利用学习向量化样本分类的在线学习成绩预测.计算机系统应用,2019,28(3):215-222

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 02,2018
  • Revised:September 27,2018
  • Adopted:
  • Online: February 22,2019
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063