BGLL Community Detection for Weighted Complex Network Based on Node Similarity
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problem of weighted overlapping community detection in complex network, the DBGLLJ (modularity Density and Jaccard based BGLL) method for weighted network is proposed. The network is firstly reconstructed by the importance of node, and then the network is divided into a series of segment according to the modularity gain and the module density gain as the phase function. The overlapping detection method combined with the improved Jaccard index is also proposed. In order to verify the proposed method, three algorithms were selected for testing in LFR networks and real-life networks. The results show that DBGLLJ method is better than the others in standard LFR networks and real-life networks, and has higher overlapping modularity which shows the effectiveness and accuracy of the proposed method. The proposed method is also applied to the reality network of the complex electromechanical system. The overlapping detection result is better and has higher reference value.

    Reference
    Related
    Cited by
Get Citation

贾郑磊,谷林,高智勇,谢军太.基于节点相似性的加权复杂网络BGLL社团检测方法.计算机系统应用,2019,28(2):201-206

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 16,2018
  • Revised:September 18,2018
  • Adopted:
  • Online: January 28,2019
  • Published: February 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063