Logo Object Detection Method Based on Improved Faster R-CNN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The development of social networks and economic globalization gives logo a great commercial value, which makes logo detection have a good application prospect. In fact, logo objects typically occupy a small portion of the image, and the low resolution of the logo makes it difficult to further improve detection performance. Therefore, this study proposes an improved detection method based on Faster R-CNN. This approach combines the generative adversarial networks and a Faster R-CNN framework, uses the network to map lower resolution features to highly expressed high resolution features, and then sends them to fully connected layers for classification and regression. The outcomes of the experiment are evaluated on a publicly available logo dataset. The results show that the method can effectively improve the accuracy of logo object detection without affecting the detection speed of the basic network.

    Reference
    Related
    Cited by
Get Citation

黄明珠,黄文清.基于改进Faster R-CNN的Logo目标检测方法.计算机系统应用,2019,28(2):41-48

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 10,2018
  • Revised:September 06,2018
  • Adopted:
  • Online: January 28,2019
  • Published: February 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063