Named Entity Recognition of Online Medical Question Answering Text
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper mainly presents the research of named entity recognition of medical texts generated by online inquiry. Using the data of online medical quiz website, we employ {B, I, O} annotation system to build data sets, and extract four medical entities of disease, treatment, examination, and symptom. Taking BiLSTM-CRF as the benchmark model, two deep learning models IndRNN-CRF and IDCNN-BiLSTM-CRF are proposed, and the validity of the model on the self built dataset is verified. The two new models are compared with the benchmark model by experiment. It is concluded that the model IDCNN-BiLSTM-CRF has an F1 value of 0.8165, which exceeds the BiLSTM-CRF's F1 value of 0.8009. The overall performance of IDCNN-BiLSTM-CRF is better than that of BiLSTM-CRF. The IndRNN-CRF model has a high precision rate of 0.8427, but its recall rate is lower than the benchmark model BiLSTM-CRF.

    Reference
    Related
    Cited by
Get Citation

杨文明,褚伟杰.在线医疗问答文本的命名实体识别.计算机系统应用,2019,28(2):8-14

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 31,2018
  • Revised:August 30,2018
  • Adopted:
  • Online: January 28,2019
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063