Vehicle Logo Recognition Method of Feature Fusion Based on D-S Evidence Theory
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    For the intelligent traffic, there are inaccuracies in the multi-dimensional information identification of vehicles. Especially for vehicle logo recognition, the recognition results depend largely on high-resolution and high-quality images. A new vehicle logo identification method is proposed for distinguishing low-quality vehicle image captured at the bayonet. This method is based on the feature fusion of D-S evidence theory, extracts Hu invariant moments and HOG features, and uses different classifiers,the basic probability distribution (BPA) is constructed, the improved D-S evidence theory is used to fuse, and the final recognition result is given according to the discriminant rule. Through experiments, it is proved that the accuracy can be maintained at a low resolution, and the classification accuracy is 94.29%, which is more robust than a single feature recognition.

    Reference
    Related
    Cited by
Get Citation

陈仿雄,程良伦,黄国恒.基于D-S证据理论的特征融合车标识别方法.计算机系统应用,2019,28(10):207-212

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 08,2018
  • Revised:August 30,2018
  • Adopted:
  • Online: October 15,2019
  • Published: October 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063