Flexible Job Shop Scheduling Based on Improved Glowworm Swarm Optimization
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    For flexible shop scheduling in the case of machine resources and processing route selectable, a flexible shop model is established with minimum and maximum completion time and time penalty costs as targets. According to the characteristics of the problem, an improved firefly algorithm is proposed. The algorithm designs a coding strategy with greedy ideas. A firefly individual represents the processing sequence and process processing position. It adopts an adaptive selection strategy to adapt the step length and improve the accuracy of the algorithm. The introduction of POX cross strategy to improve the algorithm's local and global optimization capabilities, and the use of greed to improve the convergence speed of the algorithm. The performance of the algorithm is verified by comparison with example simulations and algorithms. The experimental results show that the improved firefly algorithm is effective for solving the flexible shop scheduling problem.

    Reference
    [1] Pinedo M. Scheduling:Theory, algorithms, and systems. ⅡE Transactions, 1996, 28(8):695-697.[doi:10.1080/15458830.1996.11770714
    [2] 刘爱军, 杨育, 邢青松, 等. 多目标模糊柔性车间调度中的多种群遗传算法. 计算机集成制造系统, 2011, 17(9):1954-1961
    [3] 蔡霞, 李枚毅, 王康, 等. 基于浮点型编码策略的差分多目标柔性车间调度优化. 计算机应用研究, 2013, 30(4):999-1003.[doi:10.3969/j.issn.1001-3695.2013.04.010
    [4] 侯晓莉, 刘永, 江来臻, 等. 多目标FJSP的一维编码粒子群优化求解方法. 计算机工程与应用, 2015, 51(13):47-51, 71.[doi:10.3778/j.issn.1002-8331.1408-0067
    [5] 马立波, 王艳. 基于离散震荡粒子群算法的柔性作业车间调度优化方法. 机械制造与自动化, 2016, 45(2):231-235.[doi:10.3969/j.issn.1671-5276.2016.02.065
    [6] 薛宏全, 魏生民, 张鹏, 等. 基于多种群蚁群算法的柔性作业车间调度研究. 计算机工程与应用, 2013, 49(24):243-248, 261.[doi:10.3778/j.issn.1002-8331.1306-0315
    [7] 栾飞, 王雯, 傅卫平, 等. 基于PST层次结构的改进GA求解柔性车间调度问题. 计算机集成制造系统, 2014, 20(10):2494-2501
    [8] 徐华, 张庭. 新型离散蝙蝠算法求解柔性流水车间调度问题. 计算机工程与应用, 2016, 52(2):262-265.[doi:10.3778/j.issn.1002-8331.1412-0353
    [9] 傅卫平, 刘冬梅, 来春为, 等. 基于多色集合的改进遗传算法求解多品种柔性调度问题. 计算机集成制造系统, 2011, 17(5):1004-1010
    [10] Krishnanand KN, Ghose D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. Proceedings of the IEEE Swarm Intelligence Symposium. Pasadena, CA, USA. 2005. 84-91.
    [11] Chiang TC, Lin HJ. A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. International Journal of Production Economics, 2013, 141(1):87-98.[doi:10.1016/j.ijpe.2012.03.034
    [12] Xia WJ, Wu ZM. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 2005, 48(2):409-425
    [13] 吴秀丽, 张志强, 杜彦华, 等. 改进细菌觅食算法求解柔性作业车间调度问题. 计算机集成制造系统, 2015, 21(5):1262-1270
    [14] 马佳, 石刚. 基于改进人工免疫算法的柔性车间调度问题. 计算机仿真, 2014, 31(12):375-379.[doi:10.3969/j.issn.1006-9348.2014.12.083
    [15] 田旻, 刘人境. 分层混合遗传算法求解柔性作业车间调度问题. 工业工程与管理, 2017, 22(5):32-39
    [16] Xing LN, Chen YW, Wang P, et al. A knowledge-based ant colony optimization for flexible job shop scheduling problems. Applied Soft Computing, 2010, 10(3):888-896.[doi:10.1016/j.asoc.2009.10.006]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

夏俊红,郑建国.基于改进GSO算法的柔性作业车间E/T调度问题.计算机系统应用,2019,28(1):119-126

Copy
Share
Article Metrics
  • Abstract:1482
  • PDF: 1876
  • HTML: 1423
  • Cited by: 0
History
  • Received:July 05,2018
  • Revised:July 27,2018
  • Online: December 27,2018
Article QR Code
You are the first991001Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063