Heart Disease Prediction Based on Clustering and XGboost
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In the past decade, the incidence of heart disease has been on the rise and remains high in the world. If the physical examination indicators related to the human body can be extracted by computer measures, and the influence of different characteristics and their weights on heart disease can be analyzed through machine learning, it will play a key role in predicting and preventing heart disease. Therefore, a prediction method based on clustering and XGboost algorithm is proposed in this study. By preprocessing the data and distinguishing the features, the data sets are clustered by clustering algorithm, such as K-means. Finally, the XGboost algorithm is used to predict and analyze. The experimental results show that the proposed method based on clustering and XGboost algorithm is feasible and effective, which provides accurate and effective help for the application of medical recommendation.

    Reference
    [1] 张潇, 韦增欣, 杨天山. GBDT组合模型在股票预测中的应用. 海南师范大学学报(自然科学版), 2018, 31(1):73-80
    [2] 蔡旺华. 运用机器学习方法预测空气中臭氧浓度. 中国环境管理, 2018, 10(2):78-84
    [3] 华辉有, 陈启买, 刘海, 等. 一种融合Kmeans和KNN的网络入侵检测算法. 计算机科学, 2016, 43(3):158-162
    [4] 周丽娟, 王慧, 王文伯, 等. 面向海量数据的并行KMeans算法. 华中科技大学学报(自然科学版), 2012, 40(S1):150-152
    [5] 王娟, 王翰虎, 陈梅. 基于模糊聚类循环迭代模型的心脏病预测方法. 郑州大学学报(理学版), 2007, 39(4):137-140.[doi:10.3969/j.issn.1671-6841.2007.04.034
    [6] 游德创, 莫赞. 基于模糊xgboost算法的银行信用评价研究. 信息通信, 2018, (2):37-38.[doi:10.3969/j.issn.1673-1131.2018.02.015
    [7] 郑凯文, 杨超. 基于迭代决策树(GBDT)短期负荷预测研究. 贵州电力技术, 2017, 20(2):82-84
    [8] Xu CX, Yan JF, Yang L, et al. Context co-occurrence based relationship prediction in spatiotemporal data. Proceedings of 2018 International Conference on Computer Modeling, Simulation and Algorithm (CMSA 2018). Beijing, China. 2018. 63.
    [9] Xu ZG. Complex production process prediction model based on EMD-XGBOOST-RLSE. Proceedings of 20179th International Conference on Modelling, Identification and Control (ICMIC 2017). Kunming, China. 2017. 8.
    [10] 谢冬青, 周成骥. 基于Bagging策略的XGBoost算法在商品购买预测中的应用. 现代信息科技, 2017, (6):80-82.[doi:10.3969/j.issn.2096-4706.2017.06.032
    [11] 张钰, 陈珺, 王晓峰, 等. Xgboost在滚动轴承故障诊断中的应用. 噪声与振动控制, 2017, 37(4):166-170, 179.[doi:10.3969/j.issn.1006-1355.2017.04.032
    [12] 杨修德, 王金梅, 张丽娜. XGBoost在超短期负荷预测中的应用. 电气传动自动化, 2017, 39(4):21-25.[doi:10.3969/j.issn.1005-7277.2017.04.005
    [13] 张昊, 纪宏超, 张红宇. XGBoost算法在电子商务商品推荐中的应用. 物联网技术, 2017, 7(2):102-104
    [14] 柴利达, 薛沁文, 毛娜, 等. 基于大数据的物资价格预测方法探索. 电力大数据, 2017, 20(12):13-20
    [15] Wang WZ, Shi YL, Lyu GF, et al. Electricity consumption prediction using XGBoost based on discrete wavelet transform. Proceedings of the 2nd International Conference on Artificial Intelligence and Engineering Applications (AIEA 2017). Wuhan, China. 2017. 14.
    [16] 叶倩怡, 饶泓, 姬名书. 基于Xgboost的商业销售预测. 南昌大学学报(理科版), 2017, 41(3):275-281.[doi:10.3969/j.issn.1006-0464.2017.03.015]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘宇,乔木.基于聚类和XGboost算法的心脏病预测.计算机系统应用,2019,28(1):228-232

Copy
Share
Article Metrics
  • Abstract:2758
  • PDF: 4124
  • HTML: 3340
  • Cited by: 0
History
  • Received:July 07,2018
  • Revised:August 09,2018
  • Online: December 27,2018
Article QR Code
You are the first990782Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063