Identification of Fundus Autofluorescence Images Based on Texture Features in Preclinical Diabetic Retinopathy
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Timely diagnosis and intervention for potential diabetic retinopathy patients is very positive in improving the overall visual quality of diabetic patients and reducing medical costs. Because the fundus fluorescence images of preclinical diabetic retinopathy and normal people have no obvious difference in visual perception, this study recognizes the two groups of images through the widely used texture feature algorithm and support vector machine. Through the 10-fold cross validation of 185 fundus autofluorescence images, the LBP algorithm has a sound recognition effect. The 10-fold cross-validation accuracy of the 59-dimensional LBP operator with "Uniform" patterns reaches 91.89%. And in the case that the test set and the training set are randomly divided by 1:1, the recognition accuracy of 92 fundus fluorescence images in the test set reaches 88.12%, and the AUC is 0.943.

    Reference
    Related
    Cited by
Get Citation

傅志翔,张元勋,王历辉,陈嘉玮,柯大观.基于纹理特征的糖网临床前期眼底自发荧光图像识别.计算机系统应用,2019,28(1):251-255

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 17,2018
  • Revised:August 09,2018
  • Adopted:
  • Online: December 27,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063