Text Sentiment Classification Based on GDBN Neural Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [13]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Text sentiment classification is a hot topic in the field of natural language processing. One of its important applications is to dig out important information from online comments and grasp the trend of public opinion on the Internet. Therefore, this study proposes a method of text sentiment classification based on GDBN neural network. The algorithm improves the hidden layer in the DBN neural network by introducing genetic algorithm, which is of powerful global searching ability, and the algorithm optimizes the number of hidden units and obtains the appropriate value of the current model, then the modeling and feature extraction of this model. Finally, we can classify the extracted features of the BP neural network. By testing multiple data, the results show that the proposed algorithm is effective.

    Reference
    [1] Somasundaran S, Wilson T, Wiebe J, et al. QA with attitude:Exploiting opinion type analysis for improving question answering in on-line discussions and the news. Proceedings of the International Conference on Weblogs and Social Media. Boulder, CO, USA. 2007.
    [2] 胡雯雯, 高俊波, 施志伟, 等. 基于词性特征的特征权重计算方法. 计算机系统应用, 2018, 27(1):92-97.[doi:10.15888/j.cnki.csa.006127
    [3] Picard RW. Affective Computing. Cambridge:MIT Press, 1997.
    [4] Sarikaya R, Hinton GE, Deoras A. Application of Deep Belief Networks for natural language understanding. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(4):778-784.[doi:10.1109/TASLP.2014.2303296
    [5] Uysal AK, Gunal S. Text classification using genetic algorithm oriented latent semantic features. Expert Systems with Applications, 2014, 41(13):5938-5947.[doi:10.1016/j.eswa.2014.03.041
    [6] 张翔, 石力, 尚勃, 等. 深度置信网络的Spark并行化在微博情感分类中的应用研究. 计算机应用与软件, 2018, 35(2):48-53.[doi:10.3969/j.issn.1000-386x.2018.02.008
    [7] Mleczko WK, Kapuściński T, Nowicki RK. Rough deep belief network-application to incomplete handwritten digits pattern classification. In:Dregvaite G, Damasevicius R, eds. Information and Software Technologies. Cham:Springer, 2015. 400-411.
    [8] Jiang MY, Liang YC, Feng XY, et al. Text classification based on deep belief network and Softmax regression. Neural Computing and Applications, 2018, 29(1):61-70.[doi:10.1007/s00521-016-2401-x
    [9] Chen CLP, Zhang CY, Chen L, et al. Fuzzy restricted Boltzmann machine for the enhancement of deep learning. IEEE Transactions on Fuzzy Systems, 2015, 23(6):2163-2173.[doi:10.1109/TFUZZ.2015.2406889
    [10] Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554.[doi:10.1162/neco.2006.18.7.1527
    [11] Alexandre E, Cuadra L, Nieto-Borge JC, et al. A hybrid genetic algorithm-extreme learning machine approach for accurate significant wave height reconstruction. Ocean Modelling, 2015, 92:115-123.[doi:10.1016/j.ocemod.2015.06.010
    [12] Li J, Cheng JH, Shi JY, et al. Brief introduction of back propagation (BP) neural network algorithm and its improvement. In:Jin D, Lin S, eds. Advances in Computer Science and Information Engineering, Volume 2. Berlin Heidelberg. Springer. 2012. 553-558.
    [13] Lyu C, Lu YN, Ji DH, et al. Deep learning for textual entailment recognition. Proceedings of the 27th IEEE International Conference on TOOLS with Artificial Intelligence. Vietri sul Mare, Italy. 2016. 154-161.]
    Cited by
Get Citation

陈颖熙,廖晓东,苏例月,陶状.基于GDBN网络的文本情感倾向分类算法.计算机系统应用,2019,28(1):163-168

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 02,2018
  • Revised:July 27,2018
  • Online: December 27,2018
Article QR Code
You are the first990420Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063