Text Sentiment Classification Based on GDBN Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Text sentiment classification is a hot topic in the field of natural language processing. One of its important applications is to dig out important information from online comments and grasp the trend of public opinion on the Internet. Therefore, this study proposes a method of text sentiment classification based on GDBN neural network. The algorithm improves the hidden layer in the DBN neural network by introducing genetic algorithm, which is of powerful global searching ability, and the algorithm optimizes the number of hidden units and obtains the appropriate value of the current model, then the modeling and feature extraction of this model. Finally, we can classify the extracted features of the BP neural network. By testing multiple data, the results show that the proposed algorithm is effective.

    Reference
    Related
    Cited by
Get Citation

陈颖熙,廖晓东,苏例月,陶状.基于GDBN网络的文本情感倾向分类算法.计算机系统应用,2019,28(1):163-168

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 02,2018
  • Revised:July 27,2018
  • Adopted:
  • Online: December 27,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063