PM2.5 Forecasting Based on Improved Firefly Optimization SVM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problem of large deviation in existing PM2.5 concentration prediction, a novel model based on Improved Firefly Algorithm optimization SVM (IFA-SVM) was proposed. In this model, two neighborhood search strategies and variable step size mechanism were employed to improve FA. The IFA was applied to optimize the SVM parameters (C,, and), and an outstanding model was constructed to forecast PM2.5 concentrations in Taiyuan. The neighborhood search strategies can provide better candidate solutions; search step size was dynamically tuned by using variable step size strategy to accelerate convergence and obtain a trade-off between exploration and exploitation. The performance of the proposed IFA-SVM model has been compared with FA-SVM, Genetic Algorithm (GA)-SVM, and Particle Swarm Optimization (PSO)-SVM. Experimental results show that the proposed IFA-SVM model has achieved more accurate performance for PM2.5 forecasts in 1 day ahead and 3 days ahead compared to other method.

    Reference
    Related
    Cited by
Get Citation

范文婷,王晓.基于改进萤火虫寻优支持向量机的PM2.5预测.计算机系统应用,2019,28(1):134-139

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 01,2018
  • Revised:May 24,2018
  • Adopted:
  • Online: December 27,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063