Image Semantic Segmentation Algorithm Based on Deconvolution Feature Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of deep learning, many complex problems in semantic segmentation tasks are solved, which lays a solid foundation for image understanding. The proposed algorithm highlights two aspects. Firstly, our algorithm fuses multi-scale features from different levels of deep convolutional network by using multi-level deconvolution network. Then our algorithm upsamples these feature maps by deconvolution, meanwhile zooms them up to the original image size to predict semantic categories pixel-to-pixel. The second one, we propose a new method for data processing which is batch centralization algorithm, in order to improve the performance of network structure in this study. Through experimental verification, the mean IoU of semantic segmentation on the SIFT-Flow dataset reaches 45.2%, and the accuracy of geometric segmentation reaches 96.8%. The mean IoU of semantic segmentation on the PASCAL VOC2012 dataset reaches 73.5%.

    Reference
    Related
    Cited by
Get Citation

郑菲,孟朝晖,郭闯世.基于反卷积特征学习的图像语义分割算法.计算机系统应用,2019,28(1):147-155

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 23,2018
  • Revised:July 20,2018
  • Adopted:
  • Online: December 27,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063