Application of Grey Wolf Optimizer to Parameter Estimation to Muskingum Routing Model
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to improve the computation accuracy of the Muskingum flood routing model, a new method of parameter estimation for Muskingum model based on the improved grey wolf optimizer (IGWO) is proposed and applied to the flood calculation in the south canal between Chenggouwan and Linqing River. The experimental results show that IGWO can effectively estimate the parameters of the Muskingum model. Compared with the other parameter estimation methods of Muskingum routing model, IGWO has higher calculation accuracy and better optimization performance.

    Reference
    [1] ccarthy GT. The unit hydrograph and flood routing. Proceedings of the Conference of North Atlantic Division. Rhode Island, USA. 1939.
    [2] 詹道江, 徐向阳, 陈元芳. 工程水文学. 4版. 北京中国水利水电出版社, 2010.
    [3] Aldama AA. Least-squares parameter estimation for muskingum flood routing. Journal of Hydraulic Engineering, 1990, 116(4):580-586.[doi:10.1061/(ASCE)0733-9429(1990)116:4(580)
    [4] Yoon J, Padmanabhan G. Parameter estimation of linear and nonlinear muskingum models. Journal of Water Resources Planning and Management, 1993, 119(5):600-610.[doi:10.1061/(ASCE)0733-9496(1993)119:5(600)
    [5] 黄兴春, 董增川, 陈甜, 等. 基于遗传算法的马斯京根模型参数优化. 水电能源科学, 2014, 32(7):11-13, 22
    [6] 王文川, 徐冬梅, 邱林. 差分进化算法在马斯京根模型参数优选中的应用. 水利科技与经济, 2009, 15(9):756-758.[doi:10.3969/j.issn.1006-7175.2009.09.002
    [7] Ouyang AJ, Liu LB, Sheng Z, et al. A class of parameter estimation methods for nonlinear muskingum model using hybrid invasive weed optimization algorithm. Mathematical Problems in Engineering, 2015, 2015:573894
    [8] 崔东文, 金波. 飞蛾火焰优化算法在马斯京根模型参数优化中的应用. 人民珠江, 2016, 37(8):30-34.[doi:10.3969/j.issn.1001-9235.2016.08.007
    [9] 马玉新, 解建仓, 罗军刚. 基于免疫克隆选择算法的马斯京根模型参数估计. 计算机工程与应用, 2010, 46(34):208-212.[doi:10.3778/j.issn.1002-8331.2010.34.063
    [10] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69:46-61.[doi:10.1016/j.advengsoft.2013.12.007
    [11] Gandomi AH, Yang XS. Chaotic bat algorithm. Journal of Computational Science, 2014, 5(2):224-232.[doi:10.1016/j.jocs.2013.10.002
    [12] Zhu G P, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics and Computation, 2010, 217(7):3166-3173.[doi:10.1016/j.amc.2010.08.049
    [13] De Jong KA. An analysis of behavior of a class of genetic adaptive systems[Ph.D. thesis]. Ann Arbor, MI, USA:University of Michigan, 1975.
    [14] 金菊良, 杨晓华, 丁晶. 标准遗传算法的改进方案——加速遗传算法. 系统工程理论与实践, 2001, 21(4):8-13.[doi:10.3321/j.issn:1000-6788.2001.04.002
    [15] Wang WC, Kang YB, Qiu L. Optimal parameter estimation for muskingum model using a modified particle swarm algorithm. Proceedings of the 2010 Third International Joint Conference on Computational Science and Optimization. Washington, DC, USA. 2010. 153-156,
    [16] Yang XH, Yang ZF, Lu GH, et al. A gray-encoded, hybrid-accelerated, genetic algorithm for global optimizations in dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 2005, 10(4):355-363.[doi:10.1016/j.cnsns.2003.12.005
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王梦娜,王秋萍,王晓峰.灰狼优化算法在马斯京根模型参数估计中的应用.计算机系统应用,2018,27(12):198-203

Copy
Share
Article Metrics
  • Abstract:1725
  • PDF: 2607
  • HTML: 2029
  • Cited by: 0
History
  • Received:June 06,2018
  • Revised:June 27,2018
  • Online: December 05,2018
Article QR Code
You are the first991001Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063