Filtering Algorithm of Feature Matching Based on Local Clustering
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Feature matching is one of the key steps in image mosaic. The matching algorithm based on the best of two nearest matches often has a large number of mismatches. The good filtering algorithm can reduce the mismatch rate and improve the processing efficiency. Therefore, it is of great significance to study this kind of algorithm. The RANSAC algorithm is a widely used filtering algorithm, but it has many defects such as uncertain number of iterations and none of self-adaption in BA process. In this study, we propose a new filtering algorithm of Feature Matching based on Local Clustering (LCMF). The feature points are extracted by SURF and ORB, the BestOf2NearestMatcher algorithm is used to match, and then the LCMF algorithm is used to filter. The experiment shows that the algorithm can get better filtering result when ORB is used to extract feature.

    Reference
    Related
    Cited by
Get Citation

王金宝,赵奎,刘闽,宗子潇,王其乐.基于局部聚类的特征匹配筛选算法.计算机系统应用,2018,27(12):192-197

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 05,2018
  • Revised:June 27,2018
  • Adopted:
  • Online: December 05,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063