Intrinsic Mode Extraction and Behavior Prediction for Real-Time Evolution Data Set
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Prediction of future behavior of complex set of data sets is a difficult task. Data mining is a potential technical way. For the real-time evolutionary data sets containing multiple time series and non time sequence, a method of integrating the sequence segmentation, clustering, and pattern matching is proposed, which combines the theme discovery and joint decision. In the whole method construction, the topic discovery prediction and joint decision prediction are fused into the early sequence segmentation and clustering. The sequences are stratified and segmented for forming standard pattern sets of each layer, using multi time granularity and multi span. Then, according to the standard pattern set, with the prediction strategy, the compound pattern with high stability extension behavior is used as the theme pattern. This can predict with online pattern matching. Finally, a distributed parallel computing architecture is used to implement the whole processing algorithm. Theoretical deduction and experimental data analysis show that the accuracy of the method is improved compared with the traditional time series prediction method.

    Reference
    Related
    Cited by
Get Citation

艾锐峰,欧阳军,程杰,周凯,孙云鹏.实时演进数据序列集的内在模式提取与行为预测.计算机系统应用,2018,27(12):75-82

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 17,2018
  • Revised:June 15,2018
  • Adopted:
  • Online: December 05,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063