Scene Recognition Algorithm Using Advanced CNN Features
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of artificial intelligence, scene recognition has attracted more and more researchers' attention, which is one of the important directions of computer vision research. The traditional manual features cannot sufficiently describe the characteristics of the scene images, which leading to unsatisfied performance. On the contrary, the features extracted from Convolutional Neural Networks (CNN) contain rich semantics and structural information of the scene images. As one of the most common architectures, AlexNet network model is chosen in this study. By improving the following 4 aspects of the network:depth, width,multi-scale extraction, and multilayer fusion, the proposed approach achieves high accuracies of 92.0% and 94.5% on two publicly available datasets respectively, showing the superiority compared with other methods.

    Reference
    Related
    Cited by
Get Citation

薄康虎,李菲菲,陈虬.基于改进CNN特征的场景识别.计算机系统应用,2018,27(12):25-32

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 12,2018
  • Revised:June 04,2018
  • Adopted:
  • Online: December 05,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063