Improved Method of Difference Evolution Algorithm Based on Sliding Mode Control
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    For the robot trajectory planning problem, an improved Differential Evolution(DE) algorithm based on sliding mode control is proposed. The operation time and energy consumption is taken as the objective function. The direction of variation is guided by the difference between the best individuals and the average individuals in the population. Using the best individuals to replace the worst individuals in the population, the rate of convergence is accelerated. Removal of mutation factor and cross factor reduces manual intervention and enhances the stability of the model. Using piecewise Hermite interpolation of order 3 instead of spline interpolation of order 3 to prevent fitting overshoot and reduce chattering. Based on the system state space equation, a sliding mode control law was designed and stability is proved by using a Lyapunov function. Simulation experiments and the analysis of results are demonstrated that the improved algorithm not only has strong search ability but also accelerate the convergence rate and reduce the chattering effect in the trajectory planning of the system states.

    Reference
    [1] 钱东海, 谭伟, 赵锡芳. 基于B样条路径的机器人时间最优轨迹规划. 上海交通大学学报, 1998, 32(12):29-33
    [2] 杨国军, 崔平远. 机械手时间最优轨迹规划方法研究. 中国机械工程, 2002, (20):1715-1717.[doi:10.3321/j.issn:1004-132X.2002.20.002
    [3] 王宪, 杨国梁. 基于改进蚁群算法的机器人轨迹规划. 计算机系统应用, 2010, 19(11):79-82.[doi:10.3969/j.issn.1003-3254.2010.11.018
    [4] 甘亚辉, 戴先中. 基于遗传算法的多机器人系统最优轨迹规划. 控制理论与应用, 2010, 27(9):1245-1252
    [5] 付荣, 居鹤华. 基于粒子群优化的时间最优机械臂轨迹规划算法. 信息与控制, 2011, 40(6):802-808
    [6] 居鹤华, 付荣. 基于GA的时间最优机械臂轨迹规划算法. 控制工程, 2012, 19(3):472-477.[doi:10.3969/j.issn.1671-7848.2012.03.026
    [7] 王学琨, 李刚, 周东凯, 等. 基于DE的时间最优6-DOF机械臂轨迹规划算法. 计算机仿真, 2015, 32(8):332-337.[doi:10.3969/j.issn.1006-9348.2015.08.072
    [8] 余阳, 林明, 林永才. 基于混合遗传算法的工业机器人最优轨迹规划. 计算机工程与设计, 2012, 33(4):1574-1580.[doi:10.3969/j.issn.1000-7024.2012.04.063
    [9] 赫建立, 朱龙英, 成磊, 等. 基于遗传算法的6-DOF机器人最优时间轨迹规划. 机械传动, 2015, 39(9):41-45
    [10] 刘一扬, 刘明明. 基于改进遗传算法的机器人运动轨迹跟踪控制. 机械传动, 2016, 40(3):39-42, 61
    [11] 邓飙, 张潇, 龙勇, 等. 基于五次B样条的起竖装置时间最优轨迹规划. 组合机床与自动化加工技术, 2016, (6):21-25
    [12] 殷凤健, 梁庆华, 程旭, 等. 基于时间最优的机械臂关节空间轨迹规划算法. 机械设计与研究, 2017, 33(5):12-15
    [13] 梁延德, 李瑞峰, 张红哲, 等. 基于时间最优的PTP轨迹规划问题. 计算机工程与设计, 2017, 38(1):231-237
    [14] Das S, Konar A, Chakraborty UK. Two improved differential evolution schemes for faster global search. Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. Washington DC, USA. 2005. 991-998.
    [15] Ioannou P, Sun J, Ioannou P A. Robust adaptive controls. Ioannou P, Sun J. Robust adaptive control. Prentice Hall PTR, 2013. 333-335.
    [16] Weber M, Tirronen V, Neri F. Scale factor inheritance mechanism in distributed differential evolution. Soft Computing, 2010, 14(11):1187-1207.[doi:10.1007/s00500-009-0510-5
    [17] Saadi HA, Chouinard JY, Guessoum A. Distributed differential evolution algorithm for PAPR reduction of OFDM signals. Proceedings of the 11th International Conference on Information Science, Signal Processing and Their Applications. Montreal, QC, Canada. 2012. 567-572.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘珑龙,于盛楠,高存臣.基于滑模控制的改进差分进化算法.计算机系统应用,2018,27(12):156-162

Copy
Share
Article Metrics
  • Abstract:1440
  • PDF: 2447
  • HTML: 1134
  • Cited by: 0
History
  • Received:May 10,2018
  • Revised:June 04,2018
  • Online: December 05,2018
Article QR Code
You are the first990366Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063