Research on SCL Decoding Based on BP Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Existing decoding algorithms for polar codes still suffer from very high complexity. To solve this problem, an SCL decoding algorithm based on BP neural network is proposed. In offline, the algorithm builds and trains an appropriate BP neural network by collecting data. With the trained BP neural network, the optimal initial value of list size L is found through on-line operation. On this basis, the complexity is reduced by designing an improved SCL decoding algorithm. Experimental results show that compared with existing algorithms, the proposed algorithm can significantly reduce the average decoding complexity at low SNR.

    Reference
    Related
    Cited by
Get Citation

卢丽金,李世宝.基于BP神经网络的SCL译码研究.计算机系统应用,2018,27(12):246-250

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 09,2018
  • Revised:June 04,2018
  • Adopted:
  • Online: December 05,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063