Classification Method of Chronic Lesions Based on Rough Sets
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Because of physiological monitoring data has time continuity, inaccuracy, and fuzziness, the traditional classification algorithm is difficult to be used directly. In view of the above problems, a classification method of chronic lesions based on rough sets is proposed. First, the physiological monitoring data are discretized based on fusion of correlation and Chi-merge statistics. Then, this method uses the attribute reduction algorithm based on the compatibility matrix to remove the redundant attributes of the data. Finally, classification rules are mined based on batch and incremental data, and intelligent classification of chronic diseases can be realized by applying the above rules based on MapReduce framework. Experiments show that the method has a high recognition rate, which is helpful for the individual to fully understand the health risks.

    Reference
    Related
    Cited by
Get Citation

胡建强,王元.基于粗糙集的慢性病变分级方法.计算机系统应用,2018,27(12):268-273

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 12,2018
  • Revised:May 08,2018
  • Adopted:
  • Online: December 05,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063