Image CAPTCHA Recognition Based on Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As a security measure, CAPTCHA is widely used in Internet. This study proposes a CAPTCHA identification method based on convolutional neural network. Through convolutional layer concatenation, residual learning, global pool, and other technical means, under the premise of ensuring the recognition accuracy rate is not affected, it greatly reduces the amount of network parameters. This study uses the CAPTCHA in the railway ticket website and the CAPTCHA in the educational system as examples to test the performance of the model. For the CAPTCHA in railway ticket website, the experimental results show that this method has the least amount of parameters, and the recognition accuracy of this method is 98.76% for image and the recognition accuracy of the Chinese phrases is 99.14%. For the CAPTCHA in educational system, it has the least amount of parameters and the accuracy is 87.30%.

    Reference
    Related
    Cited by
Get Citation

秦波,顾乃杰,张孝慈,林传文.基于卷积神经网络的图像验证码识别.计算机系统应用,2018,27(11):142-148

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 02,2018
  • Revised:May 11,2018
  • Adopted:
  • Online: October 24,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063