Early Warning of Landslide in Mined Mine Dumping Site Based on PCA-LSTM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The process of landslides for mine dumps is a dynamic, large-delay, and complex situational problem. There are many factors that affect the landslide in mine dumps, and each characteristic index influences each other. However, there is no strict categorizing standard for index of landslide warning for dumping sites. This study proposes Principal Component Analysis Long-Term and Short-Term Memory network (PCA-LSTM) model, using PCA and correlation analysis, mining the first principal component among all the characteristic indicators, and the other indicators with strong correlation with the first principal component. The obtained other characteristic indexes and the first principal component are used as the main characteristic indicators to predict the dumping landslide, and the LSTM is used to combine the existing input information and the historical information when dealing with time series problems. The LSTM model predicts the displacement of the first principal component through a number of other characteristic indicators and has obtained sound results.

    Reference
    Related
    Cited by
Get Citation

曹国清,张晓明,陈亚峰.基于PCA-LSTM的多变量矿山排土场滑坡预警研究.计算机系统应用,2018,27(11):252-258

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 11,2018
  • Revised:April 28,2018
  • Adopted:
  • Online: October 24,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063