Product Image Detection Method Based on Improved Faster RCNN and Grabcut
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, object detection has been applied to many fields. However, retraining using large amount of bounding-box labeled data is needed. This study improves the Faster RCNN method and solves the problem of detecting multi-object in images using few-shot single object training data without bounding-box annotation. We propose a non-classwise bounding-box regression layer, which is only trained by public dataset and used for product training image labeling and testing image detection. Combined with Grabcut method, a data augmentation method is proposed to generate multi-object product training image. The improved faster RCNN model is re-trained by these images. In addition, a re-identification layer is added to the Faster RCNN architecture and improves the detection performance.

    Reference
    Related
    Cited by
Get Citation

胡正委,朱明.基于改进Faster RCNN与Grabcut的商品图像检测.计算机系统应用,2018,27(11):128-135

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 27,2018
  • Revised:April 23,2018
  • Adopted:
  • Online: October 24,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063