Non-Convex Optimized Impulse Noise Removal Model with L1 Data Fidelity Term
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the rapid development of digital image processing technology, image recovery has been widely used in the fields of medicine, military, public defense, and agro-meteorology. This study integrates TVL1, ROF, Squares TVL1 (STVL1), and SHI model, proposes a non-convex and non-smooth model for removing impulse noise, and uses a variable separation technique ADMM to solve the model. In general, gradient-based methods are not suitable for non-smooth optimizations. Half-quadratic and Iterative Reweighted Least Squares (IRLS) algorithms cannot be applied to non-smooth functions when the zero point is non-differentiable. For non-convex non-smooth terms, Graduated NonConvexity (GNC) algorithms track non-smooth and non-convex minimums along the potential energy of a series of approximate non-smooth energy functions and need to consider their computational time. So in order to deal with non-convex non-smooth terms of the model, the multi-step convex relaxation method is used to solve the subproblem of the model. Although this method only leads to the local optimal solution of the original nonconvex problem, the local solution is an improvement over the global solution of the initial convex relaxation. In addition, because each stage is a convex optimization problem, this method is computationally efficient. The genetic algorithm was used to select the parameters of the model. Through a large number of experiments on different pictures and different noises, the robustness, running time, ISNR and PSNR of the model were better than the other three models. And this model can maintain the local information of the image with better visual quality.

    Reference
    Related
    Cited by
Get Citation

陈静思,李春.含有L1数据保真项的非凸优化脉冲噪声去除模型.计算机系统应用,2018,27(11):192-197

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 03,2018
  • Revised:April 24,2018
  • Adopted:
  • Online: October 24,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063