Fast Recognition of Space Plants Image Based on Fully Convolutional Networks
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to solve the problem of the long-term survival of the astronauts in the space station, the research of space plants becomes more and more important. At present, there are some problems in image recognition field, such as the method of the shallow images recognition is difficult to extract hierarchical features of space plant images, and deep convolution neural network has fixed size input and long recognition time. To deal with these problems, a method based on fully convolutional networks is proposed in this study, and the networks have the ability to extract features from the shallow to deep, deep fusion spectrum features, and spatial features to achieve an efficient and accurate representation of the space plants image, so as to achieve fast and accurate recognition of the space plants image.

    Reference
    Related
    Cited by
Get Citation

樊帅,王鑫,阎镇.基于全卷积神经网络的空间植物图像快速识别.计算机系统应用,2018,27(11):136-141

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 28,2018
  • Revised:April 24,2018
  • Adopted:
  • Online: October 24,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063