Traffic Sign Recognition Based on Improved Convolutional Neural Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In view of the high time cost of traditional convolutional neural network, an improved convolutional neural network is designed, which has a reduction in the number of the convolutional kernels and an increase of the pooling methods. To solve the road traffic sign recognition problem of autopilot system and auxiliary driving system in the real scenario, the improved convolutional neural network is applied to road traffic sign recognition for the purpose of identifying traffic sign in a relatively short period of time. Taking the graphic data set GTRSB, real traffic sign image data as a sample, the real traffic sign is identified, and the overall recognition accuracy reaches 98.38%. Experimental results show that this method can reduce the recognition time while maintaining high recognition accuracy.

    Reference
    [1] 宋文杰, 付梦印, 杨毅. 一种面向无人驾驶汽车的高效交通标志识别方法. 机器人, 2015, 37(1):102-111.
    [2] 梁敏健, 崔啸宇, 宋青松, 等. 基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法. 交通运输工程学报, 2017, 17(3):151-158.
    [3] 张志佳, 贾梦思, 张丹, 等. 基于AT-SBTM的交通标志检测. 计算机技术与发展, 2017, 27(8):195-199.
    [4] 谷明琴, 蔡自兴, 何芬芬. 形状标记图和Gabor小波的交通标志识别. 智能系统学报, 2011, 6(6):526-530.
    [5] Wang GY, Ren GH, Wu ZL, et al. A hierarchical method for traffic sign classification with support vector machines. Proceedings of 2013 International Joint Conference on Neural Networks. Dallas, TX, USA. 2013.
    [6] Gonzalez-Reyna SE, Avina-Cervantes JG, Ledesma-Orozco SE, et al. Traffic sign recognition based on linear discriminant analysis. In:Castro F, Gelbukh A, González M, eds. Advances in Soft Computing and its Applications. Berlin, Heidelberg:Springer, 2013. 185-193.
    [7] Sermanet P, LeCun Y. Traffic sign recognition with multi-scale convolutional networks. Proceedings of 2011 International Joint Conference on Neural Networks. San Jose, CA, USA. 2011. 2809-2813.
    [8] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324, doi:10.1109/5.726791.
    [9] 杨斌, 钟金英. 卷积神经网络的研究进展综述. 南华大学学报(自然科学版), 2016, 30(3):66-72.
    [10] 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天. 计算机研究与发展, 2013, 50(9):1799-1804.
    [11] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507.
    [12] 陈鸿翔. 基于卷积神经网络的图像语义分割[硕士学位论文]. 杭州:浙江大学, 2016.
    [13] 常唯. 目标跟踪的神经网络综述. 光机电信息, 1998, 15(8):1-4.
    [14] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报, 2017, 40(6):1229-1251.
    [15] 党倩, 马苗, 陈昱莅. 基于二级改进LeNet-5的交通标志识别算法. 陕西师范大学学报(自然科学版), 2017, 45(2):24-28.
    [16] Giusti A, Ciresan DC, Masci J, et al. Fast image scanning with deep max-pooling convolutional neural networks. Proceedings of 2013 IEEE International Conference on Image Processing. Melbourne, VIC, Australia. 2013. 4034-4038.
    [17] 徐岩, 韦镇余. 一种改进的交通标志图像识别算法. 激光与光电子学进展, 2017, 54(2):021001.
    [18] Berkaya SK, Gunduz H, Ozsen O, et al. On circular traffic sign detection and recognition. Expert Systems with Applications, 2016, 48:67-75.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

赵银玲,周武能.基于改进卷积神经网络的交通标志识别方法.计算机系统应用,2018,27(10):209-213

Copy
Share
Article Metrics
  • Abstract:2066
  • PDF: 2744
  • HTML: 1468
  • Cited by: 0
History
  • Received:March 05,2018
  • Revised:March 28,2018
  • Online: September 29,2018
Article QR Code
You are the first990407Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063