Non-Negative Matrix Factorization on Orthogonal Subspace with L1 Norm Constrains
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to solve the problem of unstable sparseness of Non-negative Matrix Factorization (NMF), an improved NMF on orthogonal subspace with L1 norm constraints was proposed. L1 norm constrained was introduced into the objective function of NMF on Orthogonal Subspace (NMFOS), which enhanced the sparsity of the decomposition results. The multiplicative updating procedure was also produced. Experiments on UCI, ORL, and Yale show that this algorithm is superior to other algorithms in clustering and sparse representation.

    Reference
    Related
    Cited by
Get Citation

韩东,盖杉. L1范数约束正交子空间非负矩阵分解.计算机系统应用,2018,27(9):205-209

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 29,2018
  • Revised:February 27,2018
  • Adopted:
  • Online: August 17,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063