Hybrid Grey Wolf Optimizer Algorithm with Fuzzy Weight Strategy
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To solve the problem of slow convergence speed before reaching the global optimum and low precision of optimization in Grey Wolf Optimizor (GWO), a hybrid GWO algorithm based on fuzzy weight strategy is proposed. By replacing the linear convergence factor in original algorithm with a new non-linear convergence factor, global search ability is improved. Furthermore, the algorithm employs a fuzzy weight strategy to offer discrepant weight to agents who are responsible for the decision, which will enhance the optimizing ability therefore. Numberical experiments are conducted in 23 standard test functions. Experimental results show that the proposed FWGWO algorithm has better performance compared with other algorithms.

    Reference
    Related
    Cited by
Get Citation

邢燕祯,王东辉.基于模糊控制的权重决策灰狼优化算法.计算机系统应用,2018,27(10):202-208

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 26,2018
  • Revised:March 19,2018
  • Adopted:
  • Online: September 29,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063