Improvement of Image Matching Method Based on SIFT
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [15]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    SIFT algorithm is a classic method of image matching, but there are large amount of calculation and high time complexity. To solve these problems, we put forward an improved SIFT algorithm in this study. According to the eight gradient directions, we divided the 128 dimensional data of the SIFT algorithm into eight groups, and redefined the key point information. According to the new key point information, it generates new order descriptors. In this way, it will reduce the amount of calculated quantities, so as to improve the efficiency of the algorithm. The experiment shows that the improved algorithm keeps the advantages of the original algorithm, and greatly improves the efficiency of the algorithm without reducing the precision of the original algorithm.

    Reference
    [1] Lowe DG. Recognition from local scaleinva riant features. International Conference on Computer Vision. Corfu, Greece. 1999. 1150-1157.
    [2] Bay H, Tuytelaars T, Van Gool L. SURF:Speeded up robust features. In:Leonardis A, Bischof H, Pinz A, eds. Computer Vision-ECCV 2006. Berlin:Springer, 2006. 404-417.
    [3] Ke Y, Sukthankar R. PCA-SIFT:A more distinctive representation for local image descriptors. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA. 2004. 511-517.
    [4] 林晓帆, 林立文, 邓涛. 基于SURF描述子的遥感影像配准. 计算机工程, 2010, 36(12):216-218.
    [5] 芮挺, 张升奡, 周遊, 等. 具有SIFT描述的Harris角点多源图像配准. 光电工程, 2012, 39(8):26-31.
    [6] 张少敏, 支力佳, 赵大哲, 等. 融合SIFT特征的熵图估计医学图像非刚性配准.中国图像图形学报, 2012, 17(3):115-121.
    [7] 谢宜婷, 王爱平, 邹海. 基于局部近邻图的特征描述与特征匹配算法研究. 计算机应用与软件, 2017, 34(8):185-190.
    [8] Ge S, Fan G, Ding M. Non-rigid point set registration with global-local topology preservation. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, OH, USA. 2014. 245-251.
    [9] Yu TS, Wang RS. Enhancing scene parsing by transferring structures via efficient low-rank graph matching. Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Burlingame, CA, USA. 2016.
    [10] 涂秋洁, 王晅. 基于PCA-SIFT特征与贝叶斯决策的图像分类算法. 计算机应用与软件, 2016, 33(6):215-219.
    [11] Zhang XH, Wang XQ, Yuan XX, et al. An improved SIFT algorithm in the application of close-range Stereo image matching. IOP Conference Series Earth and Environmental Science, 2016, 46(1):012009.[doi:10.1088/1755-1315/46/1/012009]
    [12] Lei H, Xu ZH, Feng HJ, et al. Template-based image registration in an optical butting system. Journal of Optoelectronics·Laser, 2010, 21(11):1725-1729.(本条文献为中文文献,请核对)
    [13] Kumar RRP, Muknahallipatna S, McInroy J. An approach to parallelization of sift algorithm on gpus for real-time applications. Journal of Computer and Communications, 2016, 4(17):18-50.
    [14] Koenderink JJ. The structure of images. Biological Cybernetics,1984, 50:363-396.
    [15] Lindeberg T. Scale-space theory:A basic tool for analyzing structures at different scales. Journal of Applied Statistics,1994, 21(2):224-270.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

易飞,许珊珊.基于SIFT的图像匹配方法改进.计算机系统应用,2018,27(10):261-267

Copy
Share
Article Metrics
  • Abstract:2026
  • PDF: 2344
  • HTML: 4015
  • Cited by: 0
History
  • Received:February 24,2018
  • Revised:March 14,2018
  • Online: September 29,2018
Article QR Code
You are the first990402Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063