Driver Fatigue Detection Algorithm Based on Multi-Facial Feature Fusion
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this study, Convolution Neural Network (CNN) is applied to video comprehension, and a driver fatigue detection algorithm based on multi-facial feature fusion is proposed. In the study, Multi-Task Cascaded Convolutional Neural Networks (MTCNN) is used to locate the driver's mouth and left eye. CNN is used to extract the static features from the driver's mouth and left-eye image, combined with the dynamic features that CNN extracted from the mouth and left eye optical flow to train for classification. The experimental results show that this algorithm with an accuracy rate of 87.4% is better than only use the static image for driver fatigue detection and it can well distinguish between yawning and speech actions that are similar in static images.

    Reference
    Related
    Cited by
Get Citation

刘炜煌,钱锦浩,姚增伟,焦新涛,潘家辉.基于多面部特征融合的驾驶员疲劳检测算法.计算机系统应用,2018,27(10):177-182

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 06,2018
  • Revised:February 28,2018
  • Adopted:
  • Online: September 29,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063