Improved VSM Algorithm in Species Identification Based on 16S rRNA Gene Sequences
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the field of species identification, the traditional algorithm is based on the BLAST method, which is regarded as the authoritative method, but the method has a series of problems such as complex calculating process, time-consuming, as well as space-consuming. In this study, we propose an improved VSM algorithm based on K-String compositional vector method, and give the alternative norm-format formula in calculating the genetic distance between species in the Banach space for the reference of other scientific researchers. In this study, the computational efficiency and the result of the species identification are the two aspects to determine the properties of the improved method. The conclusion is that the calculating time of improved VSM algorithm based on 2-norm has decreased obviously than that of the BLAST algorithm, in addition, the result of classification demonstrates good consistence and convergence with the comparison result in terms of detection rate.

    Reference
    Related
    Cited by
Get Citation

祝斌,亓合媛,马俊才.基于16S rRNA序列物种鉴定的改进向量空间模型算法.计算机系统应用,2018,27(9):163-169

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 01,2018
  • Revised:February 28,2018
  • Adopted:
  • Online: August 17,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063