Early Diagnosis of Parkinson’s Disease Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the world, about seven to ten million elderly people are suffering from the Parkinson's Disease (PD). PD is a common degenerative nervous system disease. Its clinical characters are tremor, muscle rigidity, bradykinesia, and the degression of independent ability. These characters are similar with the Multiple System Atrophy (MSA). Research shows that patients with PD are often irreparably diagnosed, so people are constantly exploring new ways to differentiate PD with MSA and get early diagnosis. With the advent of the big data era, deep learning has made major breakthroughs in image recognition and classification. Therefore, the study uses the deep learning methods to differentiate PD, MSA, and healthy people. The data is from 301 Hospital of Beijing. The pre-treatment of the original Magnetic Resonance Image (MRI) is directed by the physicians of 301 Hospital of Beijing. The focus of this experiment is to optimize the neural network and make it get good results in medical image recognition and diagnosis. Based on the pathological characteristics of PD, the study proposed an improved algorithm, and it gets the better experimental results in loss, accuracy, and other indicators.

    Reference
    Related
    Cited by
Get Citation

张巧丽,迟学斌,赵地.基于深度学习的帕金森病症早期诊断.计算机系统应用,2018,27(9):1-9

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 27,2018
  • Revised:February 27,2018
  • Adopted:
  • Online: July 26,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063