Load Balancing Strategy Based on Predictive Model and Independent Training Nodes
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As business and users increase, it becomes more and more important to improve the efficiency of server clusters. In this study, the machine learning algorithm is used to predict the response time of new requests by training the historical data. According to the estimated response time of each server node, the request is allocated to the server node with the least response time. The balanced allocation of requests in a cluster has been improved and improves the efficiency of the cluster. In this study, experiments on three kinds of machine learning algorithms show that this strategy can reduce the average response time of system in small-scale high-concurrency clusters.

    Reference
    Related
    Cited by
Get Citation

陈大才,吕立,高岑,孙咏.基于预测模型及独立训练节点的负载均衡策略.计算机系统应用,2018,27(9):220-223

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 07,2018
  • Revised:February 09,2018
  • Adopted:
  • Online: August 17,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063