Optimization of Train Stopping Scheme Based on Hybrid Particle Swarm Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The stopping scheme for passenger trains is important to the operation planning of trains, and the scheme affects the quality of passenger service and the transportation efficiency. This study established a multi-target programming model, aiming to minimize the total travel time of passengers and maximize the zone accessibility. In view of the traditional Particle Swarm Optimization (PSO) algorithm, which is inefficient and easy to fall into local optimum and cannot effectively handle the discrete problems when dealing with complex high dimensional problems, a new hybrid particle swarm algorithm is proposed based on the Quantum Genetic Algorithm (QGA). First, the algorithm adopted the construction of particle swarm algorithm, employing the idea of quantum bit coding, and using PSO algorithm velocity update mechanism to update the quantum revolving door. Since the algorithm combined the global exploration of QGA and intelligent system PSO populations, which not only improves the convergence speed of algorithm, but also increases the diversity of particle. Finally, the experiment on the ZDT function optimum and stopping scheme optimum problem shows that the proposed algorithm consistently provides faster convergence and precision.

    Reference
    Related
    Cited by
Get Citation

陈晓敏,王家伟.基于混合粒子群算法的列车停站方案优化.计算机系统应用,2018,27(6):12-17

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 09,2017
  • Revised:November 01,2017
  • Adopted:
  • Online: May 29,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063