New Regions of Interest Detector Algorithm Based on Clustering Segmentation and Feature Points
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    This study proposes a saliency detection algorithm based on the fuzzy enhancement and feature points, using fuzzy enhancement and clustering segmentation to highlights the image object and internal classification. First, extract significant edge points and corner points, calculate the multiple features' means of those points, such as the brightness, color, and gradient features. Then, find all points which are belong to salient regions are closer to the means in the original image. By mathematical morphology to make sure the largest connected region, get salient regions finally. The experimental results show that the algorithm presented in this paper for saliency detection, can improve the accuracy and simplify the computation, the algorithm has an important role in the saliency detection, especially complex texture image.

    Reference
    [1] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.[DOI:10.1109/34.730558]
    [2] Ma YF, Zhang HJ. Contrast-based image attention analysis by using fuzzy growing. Proceedings of the Eleventh ACM International Conference on Multimedia. Berkeley, CA, USA. 2003. 374-381.
    [3] Zhai Y, Shah M. Visual attention detection in video sequences using spatiotemporal cues. Proceedings of the 14th ACM International Conference on Multimedia. Santa Barbara, CA, USA. 2006. 815-824.
    [4] Goferman S, Zelnik-Manor L, Tal A. Context-Aware Saliency Detection. IEEE Computer Society, 2012, 34(10):1915- 1926
    [5] Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926.[DOI:10.1109/TPAMI.2011.272]
    [6] Murray N, Vanrell M, Otazu X, et al. Saliency estimation using a non-parametric low-level vision model. Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA. 2011. 433-440.
    [7] Cheng MM, Zhang GX, Mitra NJ, et al. Global contrast based salient region detection. Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA. 2011. 409-416.
    [8] He X, Jing HY, Han Q, et al. Salient region detection combining spatial distribution and global contrast. Optical Engineering, 2012, 51(4):047007.[DOI:10.1117/1.OE.51.4.047007]
    [9] Bharath R, Nicholas LZJ, Cheng X. Scalable scene understanding using saliency-guided object localization. Proceedings of the 10th IEEE International Conference on Control and Automation. Hangzhou, China. 2013. 1503-1508.
    [10] Deng H, Sun XP, Liu ML, et al. Image enhancement based on intuitionistic fuzzy sets theory. IET Image Processing, 2016, 10(10):701-709.[DOI:10.1049/iet-ipr.2016.0035]
    [11] Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). IEEE. 2009. 1597-1604.
    [12] Deng H, Deng WK, Sun XP, et al. Mammogram enhancement using intuitionistic fuzzy sets. IEEE Trans. on Biomedical Engineering, 2017, 64(8):1803-1814.[DOI:10.1109/TBME.2016.2624306]
    [13] Deng H, Duan CH, Zhou X. A novel fuzzy enhancement of mammograms. Proceedings of 2015 IET International Conference on Biomedical Image and Signal Processing. Beijing, China. 2015. 1-5.
    [14] Avidan S, Shamir A. Seam carving for content-aware image resizing. ACM Trans. on Graphics, 26(3):10.[DOI:10.1145/1276377]
    [15] Harris C, Stephens M. A combined corner and edge detector. Proceedings of the Fourth Alvey Vision Conference. Manchester, UK. 1988. 147-151.
    [16] Lee MS, Medioni G. Grouping into regions, curves, and junctions. Computer Vision and Image Understanding, 1999, 76(1):54-69.[DOI:10.1006/cviu.1999.0787]
    [17] Reisfeld D, Wolfson H, Yeshurun Y. Context-free attentional operators:The generalized symmetry transform. International Journal of Computer Vision, 1995, 14(2):119-130.[DOI:10.1007/BF01418978]
    [18] Kadir T. Scale, Saliency and Scene Description[Master's Thesis]. Oxford:University of Oxford, 2002.
    [19] 刘莹, 张久东, 周卫红. Harris角点检测算法的优化研究. 云南民族大学学报(自然科学版), 2011, 20(2):136-138. e
    [20] 屈喜文. 一种改进的Harris角点检测方法. 机电技术, 2012, 35(4):40-42. e
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

占善华,陈晓明.基于聚类分割和特征点的显著区域检测算法.计算机系统应用,2018,27(6):95-102

Copy
Share
Article Metrics
  • Abstract:4403
  • PDF: 2749
  • HTML: 1930
  • Cited by: 0
History
  • Received:September 29,2017
  • Revised:October 25,2017
  • Online: May 29,2018
Article QR Code
You are the first990384Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063