New Regions of Interest Detector Algorithm Based on Clustering Segmentation and Feature Points
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes a saliency detection algorithm based on the fuzzy enhancement and feature points, using fuzzy enhancement and clustering segmentation to highlights the image object and internal classification. First, extract significant edge points and corner points, calculate the multiple features' means of those points, such as the brightness, color, and gradient features. Then, find all points which are belong to salient regions are closer to the means in the original image. By mathematical morphology to make sure the largest connected region, get salient regions finally. The experimental results show that the algorithm presented in this paper for saliency detection, can improve the accuracy and simplify the computation, the algorithm has an important role in the saliency detection, especially complex texture image.

    Reference
    Related
    Cited by
Get Citation

占善华,陈晓明.基于聚类分割和特征点的显著区域检测算法.计算机系统应用,2018,27(6):95-102

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 29,2017
  • Revised:October 25,2017
  • Adopted:
  • Online: May 29,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063