Human Motion Capture Data Recovery Based on Skeleton Constraint
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    For the situation that the adjacent markers of Motion Capture (MOCAP) data missing for a period of time due to lights and other factors when practically gathering data, a new MOCAP data recovery algorithm is proposed by using the latent correlation and the skeleton constraint in MOCAP data. The algorithm firstly transforms the MOCAP data to represent the changes of the relative position of adjacent markers to acquire the skeleton constraint term. Then the sparse representation and the skeleton constraint term are used for dictionary training which is utilized to recovery missing data. The experiment results show that the algorithm can improve the recovery accuracy of the coordinates of the missing markers and increase the bone length recovery accuracy to 10-4 cm, and verify the feasibility and effectiveness of the algorithm.

    Reference
    [1] Bruderlin A, Williams L. Motion signal processing. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York, NY, USA. 1995. 97-104.
    [2] Yamane K, Nakamura Y. Dynamics filter-concept and implementation of online motion generator for human figures. IEEE Trans. on Robotics and Automation, 2003, 19(3):421-432.[DOI:10.1109/TRA.2003.810579]
    [3] Hsieh CC, Kuo PL. An impulsive noise reduction agent for rigid body motion data using B-spline wavelets. Expert Systems with Applications, 2008, 34(3):1733-1741.[DOI:10.1016/j.eswa.2007.01.030]
    [4] Li L, McCann J, Pollard N, et al. BoLeRO:A principled technique for including bone length constraints in motion capture occlusion filling. Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Madrid, Spain. 2010. 179-188.
    [5] Li L, McCann J, Pollard NS, et al. DynaMMo:Mining and summarization of coevolving sequences with missing values. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France. 2009. 507-516.
    [6] Lai RYQ, Yuen PC, Lee KKW. Motion capture data completion and denoising by singular value thresholding. Proc Eurographics Association, 2011, 11(3):924-929.
    [7] Tan CH, Hou JH, Chau LP. Human motion capture data recovery using trajectory-based matrix completion. Electronics Letters, 2013, 49(12):752-754.[DOI:10.1049/el.2013.0442]
    [8] 彭淑娟, 赫高峰, 柳欣, 等. 基于运动分割和稀疏低秩分解的失真人体运动捕捉数据恢复. 计算机辅助设计与图形学学报, 2015, 27(4):721-730, 737.
    [9] 赫高峰, 彭淑娟, 柳欣, 等. 结合模糊聚类和投影近似点算法的缺失人体运动捕捉数据重构. 计算机辅助设计与图形学学报, 2015, 27(8):1416-1425.
    [10] Feng YF, Xiao J, Zhuang YT, et al. Exploiting temporal stability and low-rank structure for motion capture data refinement. Information Sciences, 2014, 277:777-793.[DOI:10.1016/j.ins.2014.03.013]
    [11] Hou JH, Chau LP, He Y, et al. Human motion capture data recovery via trajectory-based sparse representation. Proceedings of the 20th IEEE International Conference on Image Processing. Melbourne, VIC, Australia. 2014. 709-713.
    [12] Xiao J, Feng YF, Hu WY. Predicting missing markers in human motion capture using l1-sparse representation. Computer Animation & Virtual Worlds, 2011, 22(2-3):221-228.
    [13] Xiao J, Feng YF, Ji MM, et al. Sparse motion bases selection for human motion denoising. Signal Processing, 2015, 110:108-122.[DOI:10.1016/j.sigpro.2014.08.017]
    [14] Feng YF, Ji MM, Xiao J, et al. Mining spatial-temporal patterns and structural sparsity for human motion data denoising. IEEE Trans. on Cybernetics, 2015, 45(12):2693-2706.[DOI:10.1109/TCYB.2014.2381659]
    [15] Wang Z, Feng YF, Liu S, et al. A 3D human motion refinement method based on sparse motion bases selection. Proceedings of the 29th International Conference on Computer Animation and Social Agents. Geneva, Switzerland. 2016. 53-60.
    [16] Tan CH, Hou JH, Chau LP. Motion capture data recovery using skeleton constrained singular value thresholding. The Visual Computer, 2015, 31(11):1521-1532.[DOI:10.1007/s00371-014-1031-5]
    [17] Lai RYQ, Yuen PC, Lee KW, et al. Interactive character posing by sparse coding. arXiv:1201.1409, 2012.
    [18] Elad M. Sparse and Redundant Representations:From Theory to Applications in Signal and Image Processing. New York, USA:Springer, 2010:44-46.
    [19] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms. Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge, MA, USA. 2006. 801-808.
    [20] Yang AY, Sastry SS, Ganesh A, et al. Fast l1-minimization algorithms and an application in robust face recognition:A review. Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China. 2010. 1849-1852.
    [21] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202.[DOI:10.1137/080716542]
    [22] Aharon M, Elad M, Bruckstein A. rmK-SVD:An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. on Signal Processing, 2006, 54(11):4311-4322.[DOI:10.1109/TSP.2006.881199]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

汪亚明,鲁涛,韩永华.基于骨骼约束的人体运动捕捉数据失真恢复.计算机系统应用,2018,27(5):17-25

Copy
Share
Article Metrics
  • Abstract:2060
  • PDF: 3658
  • HTML: 1175
  • Cited by: 0
History
  • Received:September 12,2017
  • Revised:September 30,2017
  • Online: March 12,2018
Article QR Code
You are the first990376Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063