Algorithm Implementation of Variable Order Markov Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    It is of great significance how to model and mine historical data quickly and effectively. Based on the statistical characteristics of Markov model, this study designs and implements a variable order Markov model based on suffix array and suffix automata, in view of the limitations of the model in practical data mining applications. Based on the realization of suffix tree structure, the suffix chain is introduced to realize the quick jump of each state subsequence, and the requirement of different order length probability can be dynamically and adaptively calculated. The experimental results show that compared with the traditional Markov model, the model constructs the link between suffix sequence characteristics of probability and statistics of historical data and the state in linear time and space complexity, which can greatly reduce the storage space and time, and realize online learning and application of large data.

    Reference
    Related
    Cited by
Get Citation

王兴,吴艺,林劼,卓一帆.变阶马尔科夫模型算法实现.计算机系统应用,2018,27(4):10-17

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 17,2017
  • Revised:September 15,2017
  • Adopted:
  • Online: April 03,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063