Human Traffic Analysis Based on Video for Urban Quantitative Research
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [12]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    In the research of modern urban planning, the in-depth analysis of the information that focuses on human is crucial. The use of an effective video analysis technology to analyze and monitor video can greatly expand the basic data of pedestrian, which is of great significant to urban quantitative researches. This study deals with video that shot pedestrians in the same street for a period of time. Deep learning is used for detecting pedestrians in the specified monitoring area of the video based on the forward propagation convolution neural network model. In order to ensure the accuracy of the information for pedestrians, it tracks the detected pedestrians and determines whether the target is lost. Finally, it quantifies the number of pedestrians, the direction and speed of movement, the time of retention, etc., and carries out corresponding data analysis. The results show that the method can effectively quantify data of pedestrian information, then provide accurate and effective data support for urban quantitative studies.

    Reference
    1 龙瀛. 街道城市主义新数据环境下城市研究与规划设计的新思路. 时代建筑, 2016, (2):128-132.
    2 唐婧娴, 龙瀛, 翟炜, 等. 街道空间品质的测度、变化评价与影响因素识别——基于大规模多时相街景图片的分析. 新建筑, 2016, (5):110-115.
    3 Khan SD, Vizzari G, Bandini S, et al. Detecting dominant motion flows and people counting in high density crowds. Journal of WSCG, 2014, 22(1):21-30.
    4 乐勇. 基于监控视频动态信息分析的人流密度检测算法的研究[硕士学位论文]. 南京:南京邮电大学, 2015.
    5 姜蕾. 城市街道活力的定量评估与塑造策略[硕士学位论文]. 大连:大连理工大学, 2013.
    6 郝新华, 龙瀛. 街道绿化:一个新的可步行性评价指标. 上海城市规划, 2017, (1):32-36, 49.
    7 Liu W, Anguelov D, Erhan D, et al. SSD:Single shot MultiBox detector. Proceedings of the 14th European Conference on Computer Vision-ECCV. Amsterdam, The Netherlands. 2016. 21-37.
    8 苗春葆. 点与多边形关系的射线法. 电脑编程技巧与维护, 2008, (3):56-58.
    9 Henriques JF, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.[DOI:10.1109/TPAMI.2014.2345390]
    10 Ess A, Leibe B, Schindler K, et al. A mobile vision system for robust multi-person tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA. 2008. 1-8.
    11 Wu HL, Li WH. Robust online multi-object tracking based on KCF trackers and reassignment. Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Washington, DC, USA. 2016. 124-128.
    12 Bolme DS, Beveridge JR, Draper BA, et al. Visual object tracking using adaptive correlation filters. Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA. 2010. 2544-2550.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

曹诚,卿粼波,韩龙玫,何小海.城市量化研究中视频人流统计分析.计算机系统应用,2018,27(4):88-93

Copy
Share
Article Metrics
  • Abstract:1902
  • PDF: 2561
  • HTML: 1696
  • Cited by: 0
History
  • Received:July 26,2017
  • Revised:August 14,2017
  • Online: April 03,2018
Article QR Code
You are the first1025913Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063