Thermal Comfort Prediction Analysis Based on BP Neural Network Optimized by Bird Swarm Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Thermal comfort is an evaluation index of indoor environment comfort. Since the calculation of thermal comfort is a complex nonlinear iterative process, it is inconvenient to apply to air conditioning real-time control system. In order to solve this problem, use the BP neural network algorithm to predict thermal comfort. However, in order to improve the slow convergence rate of traditional BP neural network, the bird swarm algorithm (BSA) is used to optimize the initial weights and thresholds of BP neural network. Finally, the BSA algorithm is compared with the similar particle swarm optimization (PSO) algorithm. MATLAB software is used to simulate, and the simulation results of BSA-BP prediction model are compared with the simulation results of the basic BP neural network prediction model and the PSO-BP prediction model. The results show that the BSA-BP algorithm has faster convergence speed and higher prediction accuracy.

    Reference
    Related
    Cited by
Get Citation

郭彤颖,陈露.基于鸟群算法优化BP神经网络的热舒适度预测.计算机系统应用,2018,27(4):162-166

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 25,2017
  • Revised:August 09,2017
  • Adopted:
  • Online: April 03,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063