HDP-HMM-MTCS for Sparse Channel Estimation Algorithm in UWB Systems
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [14]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Given the sparse structure of Ultra Wide-Band (UWB) channels, Compressive Sensing (CS) is exploited for UWB channel estimation. Muti-Task Compressive Sensing (MTCS), as a CS implementation, has exhibited a potential for promoting signal reconstruction. The signal parameters and data sharing can be solved using the Gamma-Gaussian prior. In this paper, the Hierarchy Dirichle processing (HDP) provides the tree structure of the HDP prior for data sharing across multiple tasks. We research the channel estimation performance of HDP Hidden Markov Model based Muti-Task Compressive Sensing (HDP-HMM-MTCS) for UWB communication systems. In particular, investigate the effects of three factors. Firstly, the sparse structure of a standardized IEEE 802.15.4a channel under Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) environments is estimated. Secondly, the CS Rate (CSR) regions' effect on the HDP-HMM-MTCS channel estimation performance is calculated. Thirdly, the SNR regions are compared with the results of the MTCS, Simple-Task Compressive Sensing (STCS), Orthogonal Matching Pursuit (OMP), and the L1 magic estimations. The simulation results demonstrate that the HDP-HMM-MTCS has the minimum executable time and its channel estimation performances exceed those of the MTCS and the other algorithms, regardless of the LOS and NLOS environments. Therefore, the HDP-HMM-MTCS is an effective and efficient UWB channel estimation method for a sparse channel mode.

    Reference
    [1] Cheng XT, Wang MY, Guan YL. Ultrawideband channel estimation: A Bayesian compressive sensing strategy based on statistical sparsity. IEEE Trans. on Vehicular Technology, 2015, 64(5): 1819-1832. [DOI:10.1109/TVT.2014.2340894]
    [2] Donoho DL. Compressed sensing. IEEE Trans. on Information Theory, 2006, 52(4): 1289-1306. [DOI:10.1109/ TIT.2006.871582]
    [3] Candes EJ, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory, 2006, 52(2): 489-509. [DOI:10.1109/TIT.2005.862083]
    [4] Paredes J, Arce GR, Wang ZM. Ultra-wideband compressed sensing: Channel estimation. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(3): 383-395. [DOI:10.1109/ JSTSP.2007.906657]
    [5] Ji SH, Xue Y, Carin L. Bayesian compressive sensing. IEEE Trans. on Signal Processing, 2008, 56(6): 2346-2356. [DOI:10.1109/TSP.2007.914345]
    [6] Özgör M, Erkucuk S, Cirpan HA. Bayesian compressive sensing for ultra-wideband channel models. Proceedings of the 35th International Conference on Telecommunications and Signal Processing (TSP). Prague, Czech Republic. 2012. 320-324.
    [7] Ji SH, Dunson D, Carin L. Multitask compressive sensing. IEEE Trans. on Signal Processing, 2009, 57(1): 92-106. [DOI:10.1109/TSP.2008.2005866]
    [8] Teh YW, Jordan MI, Beal MJ, et al. Hierarchical dirichlet processes. Journal of the American Statistical Association, 2006, 101(476): 1566-1581. [DOI:10.1198/016214506000000302]
    [9] 邢彦廷, 吕立, 廉东本. 视频会议中的网络通信控制系统. 计算机系统应用, 2015, 24(4): 249-252.
    [10] Jhang JW, Huang WH. A high-SNR projection-based atom selection OMP processor for compressive sensing. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2016, 24(12): 3477-3488. [DOI:10.1109/TVLSI.2016. 2554401]
    [11] Cadavid AN, Ramos M. Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming. Proceedings of the 21st Symposium on Signal Processing, Images and Artificial Vision (STSIVA). Bucaramanga, Columbia. 2016. 1-7.
    [12] Qi YT, Liu DH, Dunson D, et al. Multi-task compressive sensing with dirichlet process priors. Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland. 2008. 768-775.
    [13] 常苗苗, 周金和. 基于改进贝叶斯压缩感知的正交频分复用系统信道估计. 计算机应用与软件, 2016, 33(2): 98-101.
    [14] 王玲玲, 齐丽娜. 特征字典与自适应联合的BCS-UWB信道估计. 计算机技术与发展, 2015, 25(12): 195-200.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李晓飞.超宽带系统的HDP-HMM-MTCS稀疏信道估计算法.计算机系统应用,2018,27(3):191-197

Copy
Share
Article Metrics
  • Abstract:2080
  • PDF: 2762
  • HTML: 1304
  • Cited by: 0
History
  • Received:July 13,2017
  • Revised:August 09,2017
  • Online: February 11,2018
Article QR Code
You are the first1015006Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063