HDP-HMM-MTCS for Sparse Channel Estimation Algorithm in UWB Systems
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Given the sparse structure of Ultra Wide-Band (UWB) channels, Compressive Sensing (CS) is exploited for UWB channel estimation. Muti-Task Compressive Sensing (MTCS), as a CS implementation, has exhibited a potential for promoting signal reconstruction. The signal parameters and data sharing can be solved using the Gamma-Gaussian prior. In this paper, the Hierarchy Dirichle processing (HDP) provides the tree structure of the HDP prior for data sharing across multiple tasks. We research the channel estimation performance of HDP Hidden Markov Model based Muti-Task Compressive Sensing (HDP-HMM-MTCS) for UWB communication systems. In particular, investigate the effects of three factors. Firstly, the sparse structure of a standardized IEEE 802.15.4a channel under Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) environments is estimated. Secondly, the CS Rate (CSR) regions' effect on the HDP-HMM-MTCS channel estimation performance is calculated. Thirdly, the SNR regions are compared with the results of the MTCS, Simple-Task Compressive Sensing (STCS), Orthogonal Matching Pursuit (OMP), and the L1 magic estimations. The simulation results demonstrate that the HDP-HMM-MTCS has the minimum executable time and its channel estimation performances exceed those of the MTCS and the other algorithms, regardless of the LOS and NLOS environments. Therefore, the HDP-HMM-MTCS is an effective and efficient UWB channel estimation method for a sparse channel mode.

    Reference
    Related
    Cited by
Get Citation

李晓飞.超宽带系统的HDP-HMM-MTCS稀疏信道估计算法.计算机系统应用,2018,27(3):191-197

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 13,2017
  • Revised:August 09,2017
  • Adopted:
  • Online: February 11,2018
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063